Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg 3 (518)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (153.3 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 11 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. [12214d] Với giá trị nào của m thì phương trình
A. 0 ≤ m ≤ 1.

B. 2 < m ≤ 3.

1
3|x−2|

= m − 2 có nghiệm

C. 0 < m ≤ 1.

D. 2 ≤ m ≤ 3.

Câu 2. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 3, 5 triệu đồng.
B. 70, 128 triệu đồng. C. 20, 128 triệu đồng. D. 50, 7 triệu đồng.
Câu 3. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).


√ Thể tích khối chóp S 3.ABC
√ là

3
a 3
a 3
a3 2
a3 3
A.
.
B.
.
C.
.
D.
.
12
6
12
4
Câu 4. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {5; 3}.
B. {3; 4}.

C. {3; 5}.

D. {4; 3}.

Câu 5. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối 12 mặt đều.

B. Khối bát diện đều.

C. Khối tứ diện đều.

D. Khối lập phương.

Câu 6. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (2; 2).
B. (−1; −7).
C. (0; −2).

D. (1; −3).

Câu 7. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−3; 1].
B. (−∞; −3].
C. [−1; 3].
D. [1; +∞).
Câu 8. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 21.
B. P = 10.
C. P = −10.
D. P = −21.
2

Câu 9. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 2 − log2 3.
B. 1 − log2 3.
C. 3 − log2 3.


D. 1 − log3 2.

Câu 10. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 4.
B. 0, 2.
C. 0, 5.
D. 0, 3.
x+1
bằng
Câu 11. Tính lim
x→−∞ 6x − 2
1
1
1
A. .
B. .
C. .
D. 1.
3
2
6
Câu 12. Khối đa diện đều loại {3; 3} có số đỉnh
A. 2.
B. 5.

C. 4.

D. 3.


1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y


9 11 − 19
2 11 − 3
C. Pmin =
. D. Pmin =
.
9
3

Câu 13. [12210d] Xét các số thực dương x, y thỏa mãn log3
Pmin của P = x +
√ y.

18 11 − 29
9 11 + 19
A. Pmin =
. B. Pmin =
.
21
9
4x + 1
Câu 14. [1] Tính lim
bằng?
x→−∞ x + 1
A. 4.

B. −4.

C. 2.

D. −1.
Trang 1/11 Mã đề 1


8
Câu 15. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 64.
B. 81.
C. 82.
D. 96.
Câu 16. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
B. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số nghịch biến trên khoảng (−2; 1).
Câu 17. Tính thể tích khối lập phương biết tổng diện tích √
tất cả các mặt bằng 18.
A. 9.
B. 27.
C. 3 3.
D. 8.
Câu 18. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {0}.
B. D = R \ {1}.


C. D = (0; +∞).

D. D = R.

Câu 19. Khẳng định nào sau đây đúng?
A. Hình lăng trụ tứ giác đều là hình lập phương.
B. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ đứng là hình lăng trụ đều.
D. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
Câu 20. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vô nghiệm.
B. 2.
C. 1.
D. 3.
2−n
Câu 21. Giá trị của giới hạn lim
bằng
n+1
A. 0.
B. 2.
x+2
bằng?
Câu 22. Tính lim
x→2
x
A. 3.
B. 2.

C. −1.


D. 1.

C. 0.

D. 1.
2

2

sin x
Câu 23.
+ 2cos x lần lượt
√ [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm√số f (x) = 2
√ là
A. 2 2 và 3.
B. 2 và 3.
C. 2 và 3.
D. 2 và 2 2.

Câu 24. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −5.
B. −12.
C. −15.
D. −9.
Câu 25. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
B. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
C. Cả ba đáp án trên.


D. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
Câu 26. Khối đa diện đều loại {3; 4} có số mặt
A. 10.
B. 8.

C. 12.

D. 6.

Câu 27. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 − 2; m = 1.
B. M = e−2 + 2; m = 1.
−2
C. M = e + 1; m = 1.
D. M = e2 − 2; m = e−2 + 2.
Câu 28. Bát diện đều thuộc loại
A. {5; 3}.
B. {3; 4}.

C. {3; 3}.

D. {4; 3}.

Câu 29. Cho
Z hai hàm yZ = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Trang 2/11 Mã đề 1



Z
B. Nếu
Z

f (x)dx =

Z

f 0 (x)dx =

Z

g(x)dx thì f (x) , g(x), ∀x ∈ R.

g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
D. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
C. Nếu

Câu 30. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị nhỏ nhất trên K.
C. f (x) có giá trị lớn nhất trên K.
12 + 22 + · · · + n2
n3
1

B. .
3

B. f (x) liên tục trên K.
D. f (x) xác định trên K.

Câu 31. [3-1133d] Tính lim

2
.
3

Câu 32. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
B. .
C. −3.
A. − .
3
3
A. +∞.

C.

D. 0.

D. 3.

Câu 33. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67

A. −7.
B. −2.
C.
.
D. −4.
27
[ = 60◦ , S A ⊥ (ABCD).
Câu 34. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh S C là a. Thể tích khối√chóp S .ABCD là


a3 2
a3 2
a3 3
3
A.
.
B. a 3.
C.
.
D.
.
4
12
6
Câu 35. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 0.
B. Không tồn tại.
C. 13.


D. 9.

Câu 36. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng




a 2
a 2
B. a 2.
C.
.
D.
.
A. 2a 2.
4
2
Câu 37. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 13.
B. 13.
C. log2 2020.
D. 2020.
Câu 38. [1] Tính lim
A. 0.

1 − n2
bằng?
2n2 + 1

1
B. .
2

C.

1
.
3

1
D. − .
2

x−2 x−1
x
x+1
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3).
B. (−3; +∞).
C. (−∞; −3].
D. [−3; +∞).

Câu 39. [4-1212d] Cho hai hàm số y =

Câu 40. Khối đa diện đều loại {5; 3} có số cạnh
A. 20.
B. 8.
Câu 41. Tính lim
x→5

2
A. .
5

C. 30.

D. 12.

C. +∞.

D. −∞.

x2 − 12x + 35
25 − 5x

2
B. − .
5

Trang 3/11 Mã đề 1



Câu 42. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của hình chóp S .ABCD với√mặt phẳng (AIC) có diện√tích là

2
11a2
a2 2
a2 5
a 7
.
B.
.
C.
.
D.
.
A.
8
32
4
16
q
2
Câu 43. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].
B. m ∈ [0; 2].

C. m ∈ [0; 1].
D. m ∈ [−1; 0].
Câu 44. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
ln 2
A. 1.
B. .
C.
.
D. 2.
2
2
Z 3
x
a
a
Câu 45. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 28.
B. P = 4.
C. P = −2.
D. P = 16.
Câu 46. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = R \ {1; 2}.
B. D = [2; 1].

C. D = R.

D. D = (−2; 1).

Câu 47. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai mặt.
B. Bốn mặt.
C. Ba mặt.

D. Năm mặt.

2

Câu 48. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n3 lần.
B. n2 lần.
C. 3n3 lần.
D. n lần.
Câu 49. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất khơng thay đổi?
A. 102.016.000.
B. 102.016.000.
C. 102.424.000.
D. 102.423.000.
Câu 50. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2

A. T = e + 3.
B. T = e + 1.
C. T = 4 + .
D. T = e + .
e
e
Câu 51. Hàm số nào sau đây khơng có cực trị
x−2
1
A. y = x3 − 3x.
B. y = x + .
C. y =
.
D. y = x4 − 2x + 1.
x
2x + 1
Câu 52. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≥ 3.
B. −2 ≤ m ≤ 2.
C. m ≤ 3.
D. −3 ≤ m ≤ 3.
Câu 53. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối tứ diện.
B. Khối lập phương.
C. Khối lăng trụ tam giác.
D. Khối bát diện đều.
Câu 54. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh
! đề nào dưới đây đúng?
1
A. Hàm số nghịch biến trên khoảng −∞; .

B. Hàm số nghịch biến trên khoảng (1; +∞).
! 3
!
1
1
C. Hàm số đồng biến trên khoảng ; 1 .
D. Hàm số nghịch biến trên khoảng ; 1 .
3
3
Câu 55. Khối đa diện đều loại {4; 3} có số đỉnh
A. 6.
B. 10.

C. 4.

D. 8.
Trang 4/11 Mã đề 1


Câu 56. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.
B. 1.
C. Vô nghiệm.
D. 3.
Câu 57. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = 3S h.
B. V = S h.
C. V = S h.

2
3
Câu 58. Khối đa diện đều loại {3; 3} có số cạnh
A. 4.
B. 6.
C. 5.

D. V = S h.
D. 8.

Câu 59. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là 4.
B. Phần thực là −3, phần ảo là −4.
C. Phần thực là 3, phần ảo là −4.
D. Phần thực là −3, phần ảo là 4.
Câu 60. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là


a3 3
a3 3
a3
.
B.
.
C.
.
D. a3 .
A.
3

6
2
n−1
Câu 61. Tính lim 2
n +2
A. 0.
B. 2.
C. 1.
D. 3.
Câu 62.
Z Cho hàm sốZf (x), g(x) liên tục trên R. Trong cácZmệnh đề sau, mệnh
Z đề nàoZsai?
k f (x)dx = f

A.
Z
C.

f (x)dx, k ∈ R, k , 0.
Z
Z
( f (x) + g(x))dx =
f (x)dx + g(x)dx.

f (x)g(x)dx =

B.
Z
D.


f (x)dx g(x)dx.
Z
Z
( f (x) − g(x))dx =
f (x)dx − g(x)dx.

Câu 63. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng 2n.
B. Số mặt của khối chóp bằng số cạnh của khối chóp.
C. Số mặt của khối chóp bằng 2n+1.
D. Số đỉnh của khối chóp bằng 2n + 1.
Câu 64. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1134 m.
B. 2400 m.
C. 6510 m.
D. 1202 m.
Câu 65. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là 4.
B. Phần thực là 4, phần ảo là 1.
C. Phần thực là 4, phần ảo là −1.
D. Phần thực là −1, phần ảo là −4.
 π π
Câu 66. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 7.
B. −1.
C. 1.
D. 3.
Câu 67. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu

A. lim+ f (x) = lim− f (x) = +∞.
B. lim+ f (x) = lim− f (x) = a.
x→a

x→a

x→a

x→a

D. lim f (x) = f (a).

C. f (x) có giới hạn hữu hạn khi x → a.

x→a



2
Câu 68.
√ Xác định phần ảo của số phức z = ( 2 + 3i)
A. 6 2.
B. 7.
C. −7.


D. −6 2.

Câu 69. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng

1728
1079
1637
23
A.
.
B.
.
C.
.
D.
.
4913
4913
4913
68
Trang 5/11 Mã đề 1


1
Câu 70. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; +∞).
B. (1; 3).
C. (−∞; 1) và (3; +∞). D. (−∞; 3).
Câu 71. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 12.
B. ln 4.
C. ln 14.
D. ln 10.

Câu 72. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 12.
B. 27.
C. 10.

D. 3.

Câu 73. Khối đa diện đều loại {3; 5} có số mặt
A. 8.
B. 30.

D. 12.

C. 20.

Câu 74. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x+1 y−4 z−4
x−2 y−3 z+4
=
=
và d0 :
=
=
đường thẳng d :
2
3
−5
3
−2
−1

x y−2 z−3
x y z−1
A. =
=
.
B. = =
.
2
3
−1
1 1
1
x−2 y−2 z−3
x−2 y+2 z−3
=
=
.
D.
=
=
.
C.
2
2
2
2
3
4
Câu 75. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).

B. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
Câu 76. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun √
z.



5 13
.
B. 2 13.
C. 26.
D. 2.
A.
13
Câu 77. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 6.
B. −1.
C. 2.
D. 1.
!
!
!
x
1
2
2016
4
. Tính tổng T = f

+f
+ ··· + f
Câu 78. [3] Cho hàm số f (x) = x
4 +2
2017
2017
2017
2016
.
A. T = 2017.
B. T = 1008.
C. T = 2016.
D. T =
2017
Câu 79. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
Câu 80. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 10 cạnh, 6 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.

2
Câu 81. [1228d] Cho phương trình (2 log3 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. Vô số.

C. 64.
D. 62.
!4x
!2−x
2
3
Câu 82. Tập các số x thỏa mãn


3
2
#
"
!
"
!
#
2
2
2
2
A. −∞; .
B. − ; +∞ .
C.
; +∞ .
D. −∞; .
3
3
5
5

Câu 83. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu
của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu
!
! của A lên BC là
7
8
5
A.
; 0; 0 .
B.
; 0; 0 .
C.
; 0; 0 .
D. (2; 0; 0).
3
3
3
Trang 6/11 Mã đề 1


Câu 84. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 216 triệu.
B. 220 triệu.
C. 210 triệu.
D. 212 triệu.

Câu 85. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 0.

B. 3.

C. 1.

D. 2.

Câu 86. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 3).
B. (1; 3; 2).
C. (2; 4; 6).
D. (2; 4; 4).
Câu 87. [1] Giá trị của biểu thức 9log3 12 bằng
A. 4.
B. 2.
2n + 1
Câu 88. Tìm giới hạn lim
n+1
A. 0.
B. 3.
x2 − 5x + 6
Câu 89. Tính giới hạn lim
x→2
x−2

A. 5.
B. 0.
x+1
Câu 90. Tính lim
bằng
x→+∞ 4x + 3
A. 3.
B. 1.

C. 144.

D. 24.

C. 1.

D. 2.

C. −1.

D. 1.

C.


2

Câu 91. [12215d] Tìm m để phương trình 4 x+ 1−x
3
A. m ≥ 0.
B. 0 ≤ m ≤ .

4
log2 240 log2 15
Câu 92. [1-c] Giá trị biểu thức

log3,75 2 log60 2
A. 3.
B. 1.

1
.
4

D.


1
.
3

− 3m + 4 = 0 có nghiệm
3
9
C. 0 < m ≤ .
D. 0 ≤ m ≤ .
4
4

− 4.2 x+

1−x2


+ log2 1 bằng
C. −8.

D. 4.

Câu 93.
√ Thể tích của khối lăng√trụ tam giác đều có cạnh bằng 1 là:

3
3
3
3
A.
.
B.
.
C. .
D.
.
4
2
4
12
Câu 94. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 10 năm.

C. 14 năm.
D. 12 năm.
Câu 95. Khối đa diện đều loại {4; 3} có số cạnh
A. 30.
B. 12.
log7 16
Câu 96. [1-c] Giá trị của biểu thức
log7 15 − log7
A. 4.
B. −2.

C. 20.
15
30

D. 10.

bằng
C. 2.

D. −4.
Trang 7/11 Mã đề 1


!
3n + 2
2
Câu 97. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2

của S bằng
A. 4.
B. 2.
C. 5.
D. 3.
2n2 − 1
Câu 98. Tính lim 6
3n + n4
2
A. 0.
B. .
C. 2.
D. 1.
3
Câu 99. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a
= .
A. lim [ f (x)g(x)] = ab.
B. lim
x→+∞
x→+∞ g(x)
b
C. lim [ f (x) − g(x)] = a − b.
D. lim [ f (x) + g(x)] = a + b.
x→+∞

x→+∞


Câu 100. Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?
A. Tứ diện đều.
B. Thập nhị diện đều. C. Bát diện đều.
D. Nhị thập diện đều.
x−3 x−2 x−1
x
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2).
B. [2; +∞).
C. (2; +∞).
D. (−∞; 2].
Câu 101. [4-1213d] Cho hai hàm số y =

Câu 102. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
d = 300 .
Câu 103. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
0
Độ dài cạnh bên CC = 3a. Thể tích V của

√ khối lăng trụ đã cho.3 √
3

a 3
3a 3
.
C. V =
.
D. V = 3a3 3.
A. V = 6a3 .
B. V =
2
2
log 2x
Câu 104. [1229d] Đạo hàm của hàm số y =

x2
1
1 − 4 ln 2x
1 − 2 log 2x
1 − 2 ln 2x
A. y0 = 3
.
B. y0 = 3
.
C. y0 =
.
D. y0 =
.
3

x ln 10
2x ln 10
2x ln 10
x3
0 0 0 0
Câu 105.
a. Khoảng cách từ C đến √
AC 0 bằng
√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh √
a 3
a 6
a 6
a 6
.
B.
.
C.
.
D.
.
A.
3
2
7
2
log(mx)
Câu 106. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)

A. m < 0 ∨ m > 4.
B. m ≤ 0.
C. m < 0.
D. m < 0 ∨ m = 4.

Câu 107. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (2; +∞).
C. R.
Câu 108. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
C. −e.
A. − .
B. − 2 .
2e
e


Câu 109.
Tìm
giá
trị
lớn
nhất
của
hàm
số
y
=

x
+
3
+
6−

√x
A. 2 3.
B. 3.
C. 2 + 3.
Câu 110. Tính lim
A. +∞.

x→1

x3 − 1
x−1

B. −∞.

C. 3.

D. (0; 2).
1
D. − .
e

D. 3 2.

D. 0.

Trang 8/11 Mã đề 1


Câu 111. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. Cả ba câu trên đều sai.
B. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
C. F(x) = G(x) trên khoảng (a; b).
D. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
!2x−1
!2−x
3
3


Câu 112. Tập các số x thỏa mãn
5
5
A. (+∞; −∞).
B. [3; +∞).
C. [1; +∞).
D. (−∞; 1].
Câu 113. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m > 3.
B. m < 3.
C. m ≤ 3.
D. m ≥ 3.
Câu 114. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi

cho tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng
(cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất khơng thay đổi?
A. 18 tháng.
B. 15 tháng.
C. 17 tháng.
D. 16 tháng.
x−2
Câu 115. Tính lim
x→+∞ x + 3
2
A. −3.
B. 2.
C. 1.
D. − .
3
x
y
Câu 116. [4-c] Xét các số thực dương x, y thỏa mãn 2 + 2 = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 18.
B. 27.
C. 12.
D.
.
2


Câu 117. Phần thực và√phần ảo của số phức
z

=
2

1

3i lần lượt√l


B. Phần thực là √2 − 1, phần ảo là −√ 3.
A. Phần thực là 1√− 2, phần ảo là −√ 3.
C. Phần thực là 2 − 1, phần ảo là 3.
D. Phần thực là 2, phần ảo là 1 − 3.
Câu 118. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi
G la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .
D. k = .
A. k = .
18
15
6
9
t
9
Câu 119. [4] Xét hàm số f (t) = t

, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao
9 + m2
cho f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. Vơ số.
B. 2.
C. 1.
D. 0.
!
1
1
1
Câu 120. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
5
3
A. +∞.
B. 2.
C. .
D. .
2
2
3
2
2
Câu 121. Tìm m để hàm số y = x − 3mx + 3m có 2 điểm cực trị.
A. m > 0.
B. m < 0.
C. m = 0.

D. m , 0.
Câu 122. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 10 mặt.
B. 4 mặt.
C. 8 mặt.

D. 6 mặt.

Câu 123. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; 2).
B. (−∞; 0) và (2; +∞). C. (0; +∞).

D. (−∞; 2).
Trang 9/11 Mã đề 1


Câu 124. Khối đa diện đều loại {3; 5} có số cạnh
A. 20.
B. 30.

C. 8.

D. 12.

Câu 125. Cho số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z −√2 − 2i|. Tính |z|.

A. |z| = 10.
B. |z| = 17.
C. |z| = 17.
D. |z| = 10.

d = 30◦ , biết S BC là tam giác đều
Câu 126. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
9
16
26
13
Câu 127. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 1.
B. m ≥ 0.
C. m > 0.
D. m > −1.
Câu 128. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
1

1
9
2
B. .
C.
.
D.
.
A. .
5
5
10
10
Câu 129. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 − ln x.
B. y0 = ln x − 1.
C. y0 = x + ln x.
D. y0 = 1 + ln x.

Câu 130. Cho chóp S .ABCD có đáy ABCD là hình vuông cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là √


a3 3
a3
a3 3
3
.
C.
.

D.
.
A. a 3.
B.
12
3
4
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/11 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

B

3. A
D

5.

2.

C

4.


C

6.

C

7. A

8.

D

9. A

10.

D

11.

D

13.
15.

12.

C

14. A

16.

B
D

19.
21.

C

18.

C

17.

C

D

20.

C

C

22.

B


24.

B

26.

B

27. A

28.

B

29. A

30.

B
B

23. A
25.

D

31.

B


32.

33.

B

34. A

35. A

36.

D

37. A

38.

D

39.

C

40.

41. A

42. A


43.
45.

C

D

44.

B

D

46.

C

47.

C

48. A

49.

C

50. A

51.


C

52.

D

54.

D

53. A
55.
57.

D

56. A
58.

C

59.

D

B

60.


C

61. A

62.

63. A

64.

C

66.

C

65.
67.

C
D

68. A
1

B


69.


C

70.

71.

C

72.

73.

C

74.

75. A

76. A

77. A

78.

79. A

80.

81.
83.


D

82.

C
D
B
B
D
B

84.

B
D

85.

D

86.

C
D

87.

C


88.

89.

C

90.

C

92.

C

91.

B

93. A
95.

94. A
96.

B

97. A

D


98. A

99.

B

100.

101.

B

102. A

103.

B

104. A

B

D

106.

105. A
107.

D


108. A

109.

D

110.

C

112.

C

111.

B

113.

D

115.

114.
116. A

C


117.

B

119.

120.

B

121.

122.
124.

D

D

123.

B

B
D
B

125.

D


126.

D

127.

D

128.

D

129.

D

130.

C

2



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×