TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 11 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
1
Câu 1. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3
√
một đoạn có độ dài bằng 24.
A. −3 ≤ m ≤ 4.
B. m = 4.
C. m = −3, m = 4.
D. m = −3.
Câu 2. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (1; +∞).
!
1
C. Hàm số nghịch biến trên khoảng −∞; .
3
!
1
B. Hàm số đồng biến trên khoảng ; 1 .
3
!
1
D. Hàm số nghịch biến trên khoảng ; 1 .
3
Câu 3. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 3, 5 triệu đồng.
B. 50, 7 triệu đồng.
C. 70, 128 triệu đồng. D. 20, 128 triệu đồng.
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 4. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là
√
√
√
a3 2
a3 3
a3 3
2
.
B.
.
C. 2a 2.
.
D.
A.
24
24
12
x−3
Câu 5. [1] Tính lim
bằng?
x→3 x + 3
A. +∞.
B. 0.
C. −∞.
D. 1.
Câu 6. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng khơng đổi trong thời gian ơng A hồn nợ.
100.(1, 01)3
(1, 01)3
A. m =
triệu.
B.
m
=
triệu.
(1, 01)3 − 1
3
100.1, 03
120.(1, 12)3
C. m =
triệu.
D. m =
triệu.
3
(1, 12)3 − 1
8
Câu 7. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 82.
B. 96.
C. 64.
D. 81.
!
x+1
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
Câu 8. [3] Cho hàm số f (x) = ln 2017 − ln
x
2016
4035
2017
A.
.
B. 2017.
C.
.
D.
.
2017
2018
2018
log7 16
Câu 9. [1-c] Giá trị của biểu thức
bằng
log7 15 − log7 15
30
A. 4.
B. −2.
C. −4.
D. 2.
Câu 10. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là
√
√
3
3
a 3
a 2
a3 6
a3 3
A.
.
B.
.
C.
.
D.
.
48
16
48
24
Trang 1/11 Mã đề 1
Câu 11. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
1
ab
1
.
B. √
.
C. √
.
D. 2
A. √
.
a + b2
2 a2 + b2
a2 + b2
a2 + b2
Câu 12. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 3 mặt.
C. 6 mặt.
D. 5 mặt.
Câu 13. Biểu thức nào sau đây khơng
√ 0 có nghĩa
−1
A. 0 .
B. (− 2) .
Câu 14. Hàm số y =
A. x = 1.
x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 2.
Câu 15. Khối đa diện đều loại {4; 3} có số đỉnh
A. 10.
B. 8.
C.
√
−1.
−3
D. (−1)−1 .
C. x = 3.
D. x = 0.
C. 4.
D. 6.
d = 120◦ .
Câu 16. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
B. 3a.
C. 4a.
D. 2a.
A.
2
Câu 17. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
.
B.
.
C.
.
D. a3 .
A.
12
24
6
Câu 18.
đề nào sau đây
Z [1233d-2] Mệnh Z
Z sai?
[ f (x) + g(x)]dx =
A.
f (x)dx +
g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
C.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
D.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
B.
Câu 19. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α
aα
β.
=
a
aβ
Câu 20. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng
góc
với
đáy,
S
C
=
a
3. Thể tích khối chóp S .ABCD
là
√
√
3
3
3
a 3
a
a 3
.
B.
.
C.
.
D. a3 .
A.
9
3
3
!
!
!
4x
1
2
2016
. Tính tổng T = f
+f
+ ··· + f
Câu 21. [3] Cho hàm số f (x) = x
4 +2
2017
2017
2017
2016
A. T = 2016.
B. T =
.
C. T = 2017.
D. T = 1008.
2017
Câu 22. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C) và (A0C 0 D) bằng
√
√
√
√
2a 3
a 3
a 3
A. a 3.
B.
.
C.
.
D.
.
2
2
3
Câu 23. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; +∞).
B. (−∞; 0) và (2; +∞). C. (0; 2).
D. (−∞; 2).
A. aαβ = (aα )β .
B. aα+β = aα .aβ .
C. aα bα = (ab)α .
D.
Trang 2/11 Mã đề 1
Câu 24. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
13
9
5
23
.
B.
.
C.
.
D. − .
A. −
100
100
25
16
√
√
4n2 + 1 − n + 2
bằng
Câu 25. Tính lim
2n − 3
3
A. +∞.
B. 1.
C. 2.
D. .
2
Câu 26. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√ là
√
3
3
3
3
4a 3
8a 3
a 3
8a 3
.
B.
.
C.
.
D.
.
A.
3
9
9
9
Câu 27. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √
√
3
3
a 6
a 3
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
24
24
48
8
d = 300 .
Câu 28. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
0
Độ dài cạnh bên
√
√ CC = 3a. Thể tích V của khối lăng trụ đã cho.
3
√
a3 3
3a 3
3
3
.
B. V = 3a 3.
C. V = 6a .
D. V =
.
A. V =
2
2
Câu 29. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≥ .
B. m ≤ .
C. m > .
D. m < .
4
4
4
4
Câu 30. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. 2.
C. Vô nghiệm.
D. 1.
Câu 31.
Z Trong các khẳng định sau, khẳng định nào sai? Z
1
A.
dx = ln |x| + C, C là hằng số.
B.
dx = x + C, C là hằng số.
x
Z
Z
xα+1
α
C.
x dx =
+ C, C là hằng số.
D.
0dx = C, C là hằng số.
α+1
Câu 32. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≥ 3.
B. −2 ≤ m ≤ 2.
C. m ≤ 3.
D. −3 ≤ m ≤ 3.
Câu 33. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
9t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9t + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 0.
B. 1.
C. Vô số.
D. 2.
Câu 34. [4] Xét hàm số f (t) =
Câu 35. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11
9
A.
.
B. 5.
C. .
D. 7.
2
2
Câu 36. Dãy số nào sau đây có giới hạn khác 0?
1
1
A. .
B. √ .
n
n
C.
sin n
.
n
D.
n+1
.
n
Trang 3/11 Mã đề 1
[ = 60◦ , S O
Câu 37. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.√Khoảng cách từ A đến (S
√ BC) bằng
√
√
2a 57
a 57
a 57
B.
.
C.
.
D.
.
A. a 57.
19
19
17
Câu 38. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vng
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 3
a3 5
a3 5
a3 5
A.
.
B.
.
C.
.
D.
.
12
12
4
6
0 0 0 0
0
Câu 39.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 6
a 6
a 3
A.
.
B.
.
C.
.
D.
.
7
2
3
2
Câu 40. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đôi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 8 lần.
B. Tăng gấp đôi.
C. Tăng gấp 6 lần.
D. Tăng gấp 4 lần.
Câu 41. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường
√
√
√
√ thẳng BD bằng
a b2 + c2
b a2 + c2
abc b2 + c2
c a2 + b2
.
B. √
.
C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
√
Câu 42. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là √
√
3
3
√
a
3
a
3
a3
A. a3 3.
B.
.
C.
.
D.
.
12
3
4
Câu 43. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m > 0.
B. m < 0.
C. m = 0.
D. m , 0.
3
x −1
Câu 44. Tính lim
x→1 x − 1
A. 3.
B. +∞.
C. 0.
D. −∞.
x−1
Câu 45. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
AB có độ dài bằng
√ đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng √
√
A. 2 2.
B. 2.
C. 6.
D. 2 3.
Câu 46.
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh
Z đề nào sai?
A.
Z
C.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Z
Z
f (x)g(x)dx =
f (x)dx g(x)dx.
k f (x)dx = f
B.
Z
D.
f (x)dx, k ∈ R, k , 0.
Z
Z
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Câu 47. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, √biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là
√
2a3 3
a3
a3
4a3 3
.
B.
.
C.
.
D.
.
A.
3
3
6
3
1
Câu 48. Hàm số y = x + có giá trị cực đại là
x
A. −2.
B. 1.
C. −1.
D. 2.
Câu 49. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 3, 55.
B. 24.
C. 20.
D. 15, 36.
Trang 4/11 Mã đề 1
! x3 −3mx2 +m
1
Câu 50. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m , 0.
B. m = 0.
C. m ∈ R.
D. m ∈ (0; +∞).
Câu 51. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. .
B. 4.
C. .
D. .
4
2
8
!
1
1
1
+ ··· +
Câu 52. [3-1131d] Tính lim +
1 1+2
1 + 2 + ··· + n
3
5
A. .
B. +∞.
C. 2.
D. .
2
2
Câu 53. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
D. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
Câu 54. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD
√
√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng
√
√
a 2
a 2
.
B. a 2.
.
D. 2a 2.
C.
A.
4
2
3
Câu 55. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e.
B. e5 .
C. e2 .
D. e3 .
Câu 56. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
D. m > − .
A. m ≤ 0.
B. m ≥ 0.
C. − < m < 0.
4
4
Câu 57. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
√ phẳng vng góc với (ABCD). Thể tích khối chóp
√ S .ABCD là
3
3
3
√
a 3
a 3
a 2
A.
.
B.
.
C. a3 3.
D.
.
2
2
4
2x + 1
Câu 58. Tính giới hạn lim
x→+∞ x + 1
1
A. .
B. 1.
C. −1.
D. 2.
2
7n2 − 2n3 + 1
Câu 59. Tính lim 3
3n + 2n2 + 1
7
2
A. 0.
B. 1.
C. - .
D. .
3
3
1
Câu 60. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 ≤ m ≤ 3.
B. 0 < m ≤ 1.
C. 0 ≤ m ≤ 1.
D. 2 < m ≤ 3.
Câu 61. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
Trang 5/11 Mã đề 1
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. Cả ba mệnh đề.
B. (II) và (III).
C. (I) và (III).
Câu 62. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai mặt.
B. Năm mặt.
C. Bốn mặt.
D. (I) và (II).
D. Ba mặt.
log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m < 0 ∨ m = 4.
D. m < 0.
Câu 63. [1226d] Tìm tham số thực m để phương trình
A. m ≤ 0.
B. m < 0 ∨ m > 4.
Câu 64. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó, các kích thước của hình hộp là
√
√
A. 8, 16, 32.
B. 6, 12, 24.
C. 2, 4, 8.
D. 2 3, 4 3, 38.
Câu 65. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
A. − .
B. − .
C. − 2 .
2e
e
e
Câu 66. Bát diện đều thuộc loại
A. {4; 3}.
B. {3; 3}.
C. {5; 3}.
D. −e.
D. {3; 4}.
Câu 67. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4
√
√
√
√
a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
6
12
24
36
Câu 68. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 6.
B. 1.
C. −1.
D. 2.
π
Câu 69. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3
√
trị của biểu √
thức T = a + b 3.
√
A. T = 3 3 + 1.
B. T = 4.
C. T = 2.
D. T = 2 3.
Câu 70. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 9 lần.
B. Tăng gấp 18 lần.
C. Tăng gấp 27 lần.
D. Tăng gấp 3 lần.
Câu 71. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng
√
√
√
√
14 3
20 3
A. 8 3.
B.
.
C.
.
D. 6 3.
3
3
Câu 72. Khối chóp ngũ giác có số cạnh là
A. 10 cạnh.
B. 12 cạnh.
C. 11 cạnh.
D. 9 cạnh.
Câu 73. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
3
9
A. .
B. .
C. 3.
D. 1.
2
2
3
2
Câu 74. Giá
√ x − 3x − 3x + 2
√
√ trị cực đại của hàm số y =
A. 3 − 4 2.
B. −3 − 4 2.
C. −3 + 4 2.
√
D. 3 + 4 2.
Trang 6/11 Mã đề 1
Câu 75. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 20 .(3)30
C 10 .(3)40
C 40 .(3)10
C 20 .(3)20
B. 50 50 .
C. 50 50 .
D. 50 50 .
A. 50 50 .
4
4
4
4
n−1
Câu 76. Tính lim 2
n +2
A. 0.
B. 1.
C. 2.
D. 3.
Câu 77. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 1.
B. 2.
C. 3.
D. 0.
Câu 78. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 220 triệu.
B. 210 triệu.
C. 216 triệu.
D. 212 triệu.
Câu 79. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 4).
B. (2; 4; 6).
C. (1; 3; 2).
D. (2; 4; 3).
Câu 80. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của
nó
A. Tăng lên n lần.
B. Giảm đi n lần.
C. Không thay đổi.
D. Tăng lên (n − 1) lần.
Câu 81. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 5 mặt. B. 5 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 9 cạnh, 6 mặt. D.
x+1
bằng
Câu 82. Tính lim
x→−∞ 6x − 2
1
1
1
B. .
C. .
D.
A. .
3
2
6
Câu 83. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
A. V = S h.
B. V = 3S h.
C. V = S h.
D.
2
Câu 84. Khối đa diện đều loại {3; 4} có số đỉnh
A. 4.
B. 8.
C. 10.
D.
Câu 85. Hàm số nào sau đây khơng có cực trị
x−2
.
A. y = x4 − 2x + 1.
B. y =
2x + 1
1
C. y = x + .
x
6 đỉnh, 6 cạnh, 6 mặt.
1.
1
V = S h.
3
6.
D. y = x3 − 3x.
2
Câu 86. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 4.
B. 2.
C. 5.
D. 3.
Câu 87. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18. √
A. 8.
B. 9.
C. 27.
D. 3 3.
Câu 88. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tam giác và một hình chóp tứ giác.
B. Hai hình chóp tứ giác.
C. Một hình chóp tứ giác và một hình chóp ngũ giác.
D. Hai hình chóp tam giác.
Trang 7/11 Mã đề 1
Câu 89. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 2020.
B. 2020.
C. 13.
D. log2 13.
Câu 90. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là
√
√
a3 3
a3
a3 3
3
A. a .
B.
.
C.
.
D.
.
6
3
2
Câu 91. Khối đa diện đều loại {4; 3} có số mặt
A. 6.
B. 12.
C. 8.
D. 10.
q
2
Câu 92. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [−1; 0].
B. m ∈ [0; 1].
C. m ∈ [0; 2].
D. m ∈ [0; 4].
Câu 93. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
23
1728
1637
1079
A.
.
B.
.
C.
.
D.
.
68
4913
4913
4913
Câu 94. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|
√
√
√
√
12 17
A. 34.
.
C. 68.
B.
D. 5.
17
Câu 95. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 4}.
B. {5; 3}.
C. {3; 5}.
D. {4; 3}.
[ = 60◦ , S A ⊥ (ABCD).
Câu 96. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng khoảng cách từ A đến cạnh
√chóp S .ABCD là
√
√ S C là a. Thể tích khối
3
3
3
√
a
3
a
2
a
2
B.
.
C.
.
D.
.
A. a3 3.
6
12
4
Câu 97. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m < 3.
B. m ≥ 3.
C. m > 3.
D. m ≤ 3.
Câu 98. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
A. −2.
B. −4.
C. −7.
D.
Câu 99. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = 0.
B. x = −2.
C. x = −8.
67
.
27
D. x = −5.
Câu 100. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√
√
√ của hàm số. Khi đó tổng M + m
B. 16.
C. 8 2.
D. 8 3.
A. 7 3.
Câu 101. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. e2016 .
B. 0.
C. 1.
D. 22016 .
Câu 102. [1] Đạo hàm của hàm số y = 2 x là
1
A. y0 =
.
B. y0 = 2 x . ln x.
ln 2
Câu 103. Khối lập phương thuộc loại
A. {3; 3}.
B. {3; 4}.
C. y0 =
1
.
2 x . ln x
C. {5; 3}.
D. y0 = 2 x . ln 2.
D. {4; 3}.
Trang 8/11 Mã đề 1
[ = 60◦ , S O
Câu 104. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S
√ BC) bằng
√
√
a 57
a 57
2a 57
B.
A. a 57.
.
C.
.
D.
.
17
19
19
ln2 x
m
Câu 105. [3] Biết rằng giá trị lớn nhất của hàm số y =
trên đoạn [1; e3 ] là M = n , trong đó n, m là
x
e
các số tự nhiên. Tính S = m2 + 2n3
A. S = 32.
B. S = 24.
C. S = 22.
D. S = 135.
Câu 106. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối lập phương.
B. Khối bát diện đều.
C. Khối 12 mặt đều.
D. Khối tứ diện đều.
x2 +2x
Câu 107. [2] Tổng các nghiệm của phương trình 2
= 82−x là
A. −6.
B. 6.
C. −5.
D. 5.
Câu 108. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối tứ diện.
B. Khối lăng trụ tam giác.
C. Khối lập phương.
D. Khối bát diện đều.
Câu 109. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hồn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 22 triệu đồng.
B. 3, 03 triệu đồng.
C. 2, 25 triệu đồng.
D. 2, 20 triệu đồng.
Câu 110. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
D. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngồi ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
Câu 111. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x+1 y−4 z−4
x−2 y−3 z+4
=
=
và d0 :
=
=
đường thẳng d :
2
3
−5
3
−2
−1
x−2 y−2 z−3
x y−2 z−3
A.
=
=
.
B. =
=
.
2
3
4
2
3
−1
x y z−1
x−2 y+2 z−3
C. = =
.
D.
=
=
.
1 1
1
2
2
2
x−2
Câu 112. Tính lim
x→+∞ x + 3
2
A. 2.
B. −3.
C. − .
D. 1.
3
Câu 113. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. V = 4π.
B. 8π.
C. 32π.
D. 16π.
Câu 114. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 0.
B. 2.
C. 1.
D. 3.
Câu 115. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 2.
B. −2.
C. 4.
D. −4.
Câu 116. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9
tháng thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không
thay đổi trong thời gian gửi.
A. 0, 5%.
B. 0, 8%.
C. 0, 7%.
D. 0, 6%.
Trang 9/11 Mã đề 1
Câu 117. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. R.
B. (0; 2).
C. (−∞; 1).
D. (2; +∞).
Câu 118. [1] Hàm số nào đồng
√ biến trên khoảng (0; +∞)?
A. y = loga x trong đó a = 3 − 2.
B. y = log π4 x.
√
C. y = log 2 x.
D. y = log 14 x.
d = 60◦ . Đường chéo
Câu 119. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vuông tại A, AC = a, ACB
0
0 0
0 0
◦
BC của mặt bên (BCC B ) tạo với mặt phẳng (AA C C) một góc 30 . Thể tích của khối lăng trụ ABC.A0 B0C 0
là
√
√
√
√
4a3 6
2a3 6
a3 6
3
A.
.
B.
.
C. a 6.
D.
.
3
3
3
Câu 120. Khối đa diện đều loại {3; 4} có số mặt
A. 12.
B. 10.
C. 6.
D. 8.
Câu 121. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tam giác.
B. Hai khối chóp tứ giác.
C. Một khối chóp tam giác, một khối chóp tứ giác.
D. Một khối chóp tam giác, một khối chóp ngữ giác.
Câu 122. Khối đa diện đều loại {4; 3} có số cạnh
A. 20.
B. 12.
C. 30.
D. 10.
Câu 123. Khối đa diện đều loại {5; 3} có số đỉnh
A. 30.
B. 12.
C. 20.
D. 8.
Câu 124. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
A. lim [ f (x) + g(x)] = a + b.
B. lim [ f (x)g(x)] = ab.
x→+∞
x→+∞
f (x) a
= .
C. lim [ f (x) − g(x)] = a − b.
D. lim
x→+∞
x→+∞ g(x)
b
Câu 125. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối tứ diện đều.
C. Khối bát diện đều. D. Khối 20 mặt đều.
√
Câu 126.√Thể tích của khối lập phương có cạnh bằng a 2
√
√
2a3 2
.
B. 2a3 2.
A.
C. V = 2a3 .
D. V = a3 2.
3
x2 − 12x + 35
Câu 127. Tính lim
x→5
25 − 5x
2
2
A. +∞.
B. −∞.
C. − .
D. .
5
5
Câu 128. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 3.
B. 4.
Câu 129. Khối đa diện đều loại {3; 4} có số cạnh
A. 6.
B. 8.
C. 1.
D. 2.
C. 10.
D. 12.
Trang 10/11 Mã đề 1
Câu 130. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (II) sai.
B. Không có câu nào C. Câu (I) sai.
sai.
D. Câu (III) sai.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 11/11 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
D
3.
5.
D
C
10. A
12. A
B
14. A
B
16. A
18.
17. A
19.
D
20.
21.
D
22.
23.
B
24. A
25.
B
26.
27. A
29.
D
8.
13. A
15.
B
6. A
7.
11.
4.
B
9.
D
2.
C
D
B
D
C
28. A
B
30.
B
31.
C
32.
D
33.
C
34.
D
35.
C
36.
D
37.
B
39.
41.
38.
C
B
40. A
B
42.
43.
D
44. A
45.
D
46.
47.
D
48. A
49.
D
50.
51. A
C
C
B
52.
C
C
53.
B
54.
55.
B
56.
D
57.
B
58.
D
60.
D
62.
D
59.
C
61.
D
63.
64.
C
66.
65. A
67.
B
68. A
1
B
D
69.
70.
B
D
71.
72. A
73. A
74.
75. A
76. A
77.
79.
C
78.
D
80.
B
81. A
D
B
82.
D
83.
85.
C
C
D
84.
B
86. A
87.
D
88.
D
89.
D
90.
D
91. A
92. A
93.
C
94.
95.
C
96.
97.
B
101.
100.
103.
D
D
C
104.
105. A
106.
B
108. A
C
109. A
111.
B
102.
B
107.
D
98. A
C
99.
B
C
114. A
110.
D
112.
D
115.
B
B
116.
C
117.
118.
C
119.
C
121.
C
123.
C
120.
122.
D
B
124.
126.
D
125. A
B
128. A
130.
B
2
127.
D
129.
D