Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg 4 (606)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (150.77 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

d = 120◦ .
Câu 1. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
D. 4a.
A. 2a.
B. 3a.
C.
2
Câu 2. !Dãy số nào sau đây có giới
!n hạn là 0?
n
1
4
A.
.
B.
.
e
3
Câu 3. [1-c] Giá trị của biểu thức


A. 2.

log7 16
log7 15 − log7

B. 4.

!n
5
C. − .
3
15
30

!n
5
D.
.
3

bằng
C. −4.

Câu 4. Hàm số nào sau đây khơng có cực trị
1
x−2
.
C. y = x + .
A. y = x3 − 3x.
B. y =

2x + 1
x
log2 240 log2 15
Câu 5. [1-c] Giá trị biểu thức

+ log2 1 bằng
log3,75 2 log60 2
A. 4.
B. −8.
C. 3.

D. −2.
D. y = x4 − 2x + 1.

D. 1.

3

Câu 6. Tính lim
x→1

A. 0.

x −1
x−1

B. −∞.

C. +∞.


D. 3.

Câu 7. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; 2).
B. Hàm số đồng biến trên khoảng (0; +∞).
C. Hàm số nghịch biến trên khoảng (−∞; 2).
D. Hàm số nghịch biến trên khoảng (0; 2).
Câu 8. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có hai.
B. Có một hoặc hai.
C. Có một.
D. Khơng có.
Z 3
x
a
a
Câu 9. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá trị

d
d
0 4+2 x+1
P = a + b + c + d bằng?
A. P = −2.
B. P = 28.
C. P = 4.
D. P = 16.
Câu 10. Khối đa diện đều loại {3; 4} có số mặt
A. 6.

B. 8.
2n + 1
Câu 11. Tính giới hạn lim
3n + 2
1
A. .
B. 0.
2
Câu 12.√Thể tích của tứ diện đều √
cạnh bằng a
3
3
a 2
a 2
A.
.
B.
.
6
4

C. 12.

C.

3
.
2



a3 2
C.
.
2

D. 10.

D.

2
.
3


a3 2
D.
.
12

Câu 13. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. .
B. .
C. .
D. 4.
8
2
4

Trang 1/10 Mã đề 1


Câu 14. Hàm số y =
A. x = 2.

x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 0.
0

C. x = 3.
0

D. x = 1.

0

Câu 15. [3-1122h] Cho hình lăng trụ ABC.A B C có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4





a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
6
36
24
Câu 16. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {1}.
B. D = R.
C. D = (0; +∞).
D. D = R \ {0}.
d = 300 .
Câu 17. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vng tại A. BC = 2a, ABC
0
Độ dài cạnh bên CC = 3a. Thể tích V √của khối lăng trụ đã cho.


3a3 3
a3 3

3
3
.
C. V = 6a .
D. V =
.
B. V =
A. V = 3a 3.
2
2
Câu 18. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là


a3 3
a3 3
a3
3
A. a .
B.
.
C.
.
D.
.
6
2
3

Câu 19. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy

là 300 . Thể
theo a.


√ tích khối chóp S .ABC3 √
3
a 6
a3 6
a3 6
a 2
.
B.
.
C.
.
D.
.
A.
6
18
36
6
Câu 20. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 24.
B. 15, 36.
C. 3, 55.
D. 20.
d = 60◦ . Đường chéo

Câu 21. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0





2a3 6
a3 6
4a3 6
3
A.
.
B.
.
C. a 6.
D.
.
3
3
3
 π π
Câu 22. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. −1.
B. 3.
C. 1.
D. 7.
Câu 23. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. −2 + 2 ln 2.

B. 4 − 2 ln 2.
C. e.

D. 1.

Câu 24. Khối đa diện đều loại {4; 3} có số cạnh
A. 20.
B. 12.

D. 30.

C. 10.

Câu 25. Tìm m để hàm số y = x − 3mx + 3m có 2 điểm cực trị.
A. m = 0.
B. m > 0.
C. m < 0.
3

2

2

D. m , 0.

Câu 26. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = +∞.
B. f (x) có giới hạn hữu hạn khi x → a.
x→a
x→a

C. lim+ f (x) = lim− f (x) = a.
D. lim f (x) = f (a).
x→a

x→a

x→a

Câu 27. [1] Đạo hàm của hàm số y = 2 là
1
A. y0 = 2 x . ln 2.
B. y0 =
.
ln 2
x

C. y0 = 2 x . ln x.

D. y0 =

1
2 x . ln

x

.

Trang 2/10 Mã đề 1



Câu 28. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 12 mặt đều.

C. Khối 20 mặt đều.

D. Khối tứ diện đều.

Câu 29. Khối đa diện đều loại {4; 3} có số đỉnh
A. 10.
B. 4.

C. 8.

D. 6.

8
Câu 30. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 96.
B. 64.
C. 81.
D. 82.
Câu 31. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P hoặc d ⊥ P.
B. d ⊥ P.
C. d song song với (P).
D. d nằm trên P.
9t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9t + m2

f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. Vơ số.
B. 1.
C. 2.
D. 0.

Câu 32. [4] Xét hàm số f (t) =

Câu 33. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (0; −2).
B. (1; −3).
C. (−1; −7).

D. (2; 2).

Câu 34. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
2

A. 6.

B. −1.

Câu 35. Bát diện đều thuộc loại
A. {4; 3}.
B. {5; 3}.

3

Z


6
3x + 1

C. 2.

D. 4.

C. {3; 3}.

D. {3; 4}.

. Tính

1

f (x)dx.
0

Câu 36. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị
"
!
" nhỏ! nhất của biểu thức P = x + 2y thuộc tập nào dưới đây?
5
5
;3 .
B. [3; 4).
C. (1; 2).
D. 2; .
A.

2
2


ab.

Câu 37. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tam giác.
B. Hai hình chóp tứ giác.
C. Một hình chóp tứ giác và một hình chóp ngũ giác.
D. Một hình chóp tam giác và một hình chóp tứ giác.
Câu 38.
đề nào sai? Z
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh Z
A.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
B.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Z
Z
Z
Z
Z
C.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
D.

f (x)g(x)dx =
f (x)dx g(x)dx.
!
1
1
1
Câu 39. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
A. .
B. 2.
C. 1.
2

Câu 40. Xác định phần ảo của số phức z = ( 2 + 3i)2

A. 7.
B. −7.
C. −6 2.

D. 0.

D. 6 2.

Câu 41. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 11.

B. 4.
C. 12.
D. 10.
Trang 3/10 Mã đề 1


Câu 42. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên khoảng (−2; 1).
B. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
Câu 43. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 8 năm.
B. 10 năm.
C. 9 năm.
D. 7 năm.



x = 1 + 3t




Câu 44. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua





z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là











x
=
1
+
7t
x
=
−1
+
2t
x
=
−1

+
2t
x = 1 + 3t
















A. 
.
B. 
y=1+t
y = −10 + 11t . C. 
y = −10 + 11t . D. 
y = 1 + 4t .

















z = 1 + 5t
z = −6 − 5t
z = 6 − 5t
z = 1 − 5t
Câu 45. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 5.
B. 9.

C. 7.

D. 0.


Câu 46. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là




a3
a3 3
a3 3
3
A. a 3.
B.
.
C.
.
D.
.
4
12
3
Câu 47. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −6.
B. −3.
C. 0.
D. 3.
Câu 48. [1] !Tập xác định của hàm số y! = log3 (2x + 1) là
!
1
1
1
A. −∞; .
B.
; +∞ .
C. −∞; − .
2

2
2

!
1
D. − ; +∞ .
2

Câu 49. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
.
D. 12.
A. 18.
B. 27.
C.
2
1 + 2 + ··· + n
Câu 50. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
1
A. lim un = .
B. Dãy số un khơng có giới hạn khi n → +∞.
2
C. lim un = 1.
D. lim un = 0.
Câu 51. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)

2a
8a
a
5a
A.
.
B.
.
C. .
D.
.
9
9
9
9
Câu 52. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
Trang 4/10 Mã đề 1


(III) lim qn = +∞ nếu |q| > 1.
A. 1.

B. 2.

C. 0.

D. 3.


x+2
Câu 53. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 1.
B. 3.
C. Vô số.
D. 2.
Câu 54. Tính thể tích khối lập phương biết tổng diện tích √
tất cả các mặt bằng 18.
A. 9.
B. 8.
C. 3 3.
D. 27.
2−n
bằng
Câu 55. Giá trị của giới hạn lim
n+1
A. 2.
B. 0.
C. −1.
D. 1.
Câu 56. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
D. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
Câu 57. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 5}.

B. {3; 4}.
C. {5; 3}.
D. {4; 3}.
Z 1
Câu 58. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
1
A. .
4

0

B. 0.

C.

1
.
2

D. 1.

Câu 59. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
Câu 60. Cho
√ số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.
A. |z| = 10.

B. |z| = 10.
C. |z| = 17.
D. |z| = 17.
Câu 61. Dãy số nào sau đây có giới hạn khác 0?
n+1
sin n
A.
.
B.
.
n
n

C.

1
.
n

1
D. √ .
n

Câu 62. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 3}.
B. {5; 3}.
C. {3; 4}.

D. {4; 3}.
q

2
Câu 63. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [−1; 0].
B. m ∈ [0; 2].
C. m ∈ [0; 4].
D. m ∈ [0; 1].
Câu 64. Dãy số nào có giới hạn bằng 0?!
n
−2
2
A. un = n − 4n.
B. un =
.
3

!n
6
C. un =
.
5

Câu 65. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (2; +∞).
B. R.
C. (0; 2).

Câu 66. Thể tích của khối lập phương


cạnh
bằng
a
2

3


2a 2
A. 2a3 2.
B.
.
C. V = a3 2.
3

D. un =

n3 − 3n
.
n+1

D. (−∞; 1).

D. V = 2a3 .
Trang 5/10 Mã đề 1


Câu 67. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay

đổi trong thời gian gửi.
A. 0, 7%.
B. 0, 5%.
C. 0, 8%.
D. 0, 6%.
Câu 68. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 10 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.

x2 + 3x + 5
Câu 69. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. 1.
B. .
C. 0.
D. − .
4
4
Câu 70. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
√ tích khối chóp S .ABC
√ với đáy và S C = a 3. 3Thể
√là


3
3
2a 6
a 3
a3 3
a 6
A.
.
B.
.
C.
.
D.
.
12
9
4
2
Câu 71. Trong các mệnh đề dưới đây, mệnh đề nào!sai?
un
A. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
B. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
C. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
!

un
= +∞.
D. Nếu lim un = a > 0 và lim vn = 0 thì lim
vn
Câu 72. Biểu thức nào sau đây khơng
√ có nghĩa
A. 0−1 .
B. (− 2)0 .

C. (−1)−1 .

D.


−1.

−3

Câu 73. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 1.

B. 3.

C. 4.

D. 2.


Câu 74. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. [6, 5; +∞).
B. (4; 6, 5].
C. (−∞; 6, 5).

D. (4; +∞).

Câu 75. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều.

D. Khối 20 mặt đều.

C. Khối tứ diện đều.

Câu 76. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 77. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.

C. Khối bát diện đều.

D. Khối lập phương.

Câu 78. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?

A. (−∞; −1) và (0; +∞). B. (−1; 0).
C. (−∞; 0) và (1; +∞). D. (0; 1).
Trang 6/10 Mã đề 1


! x3 −3mx2 +m
1
Câu 79. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m , 0.
B. m ∈ R.
C. m = 0.
D. m ∈ (0; +∞).
Câu 80. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. 2n2 lần.
B. n3 lần.
C. n3 lần.
D. 2n3 lần.
Câu 81. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là

3
3
3

a 15

a 6
a
5
A.
.
B.
.
C. a3 6.
D.
.
3
3
3
Câu 82.
đề nào sau đây sai?
Z [1233d-2] Mệnh
Z
A.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
B.
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
C.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z

Z
Z
D.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
x2 − 5x + 6
x→2
x−2
B. 0.

Câu 83. Tính giới hạn lim
A. 5.

C. 1.

D. −1.

Câu 84. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC theo a


a3 15
a3
a3 5
a3 15
A.
.
B.
.
C.

.
D.
.
5
3
25
25
Câu 85. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. −6.
B. 5.
C. 6.
D. −5.

Câu 86. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị ngun dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. 62.
C. Vô số.
D. 63.
2

Câu 87. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m < 3.
B. m > 3.
C. m ≥ 3.
D. m ≤ 3.
0 0 0 0
0
Câu 88.√ [2] Cho hình lâp phương

√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 3
a 6
a 6
a 6
A.
.
B.
.
C.
.
D.
.
2
7
2
3

Câu 89. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
A. 2e + 1.

B. 3.

C. 2e.

D.

2
.

e

Câu 90. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ
√ min |z − 1 − i|.
√ thức |z − 1 + 3i| = 3. Tìm
A. 2.
B. 1.
C. 10.
D. 2.
Câu 91. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 0.
B. m ≥ 0.
C. m > 1.

D. m > −1.
Trang 7/10 Mã đề 1


1
1
1
Câu 92. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3
B. +∞.
C. 2.
A. .
2


!

D.

5
.
2

Câu 93. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞

A. lim [ f (x) − g(x)] = a − b.
x→+∞

C. lim [ f (x) + g(x)] = a + b.
x→+∞

x→+∞

f (x) a
= .
g(x) b
D. lim [ f (x)g(x)] = ab.

B. lim

x→+∞

x→+∞


2

2

Câu 94.
số f (x) = 2sin x + 2cos x lần lượt
√ [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm √
√ là
A. 2 và 3.
B. 2 và 3.
C. 2 2 và 3.
D. 2 và 2 2.
Câu 95. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính quãng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 24 m.
B. 16 m.
C. 12 m.
D. 8 m.
Câu 96. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Giảm đi n lần.
B. Tăng lên (n − 1) lần. C. Tăng lên n lần.
D. Không thay đổi.
Câu 97. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
ab
1
1

.
B. 2
.
D. √
.
.
C. √
A. √
2
a +b
2 a2 + b2
a2 + b2
a2 + b2
Câu 98. Nếu khơng sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm tứ diện đều.
B. Một tứ diện đều và bốn hình chóp tam giác đều.
C. Bốn tứ diện đều và một hình chóp tam giác đều.
D. Năm hình chóp tam giác đều, khơng có tứ diện đều.
Câu 99. Cho hàm số y = x3 − 2x2 + x + 1. !Mệnh đề nào dưới đây đúng?
!
1
1
A. Hàm số nghịch biến trên khoảng ; 1 .
B. Hàm số nghịch biến trên khoảng −∞; .
3!
3
1
C. Hàm số đồng biến trên khoảng ; 1 .
D. Hàm số nghịch biến trên khoảng (1; +∞).

3
Câu 100. [3] Biết rằng giá trị lớn nhất của hàm số y =
các số tự nhiên. Tính S = m2 + 2n3
A. S = 24.
B. S = 32.

ln2 x
m
trên đoạn [1; e3 ] là M = n , trong đó n, m là
x
e

C. S = 135.

D. S = 22.

x2 −4x+5

Câu 101. [2] Tổng các nghiệm của phương trình 3
= 9 là
A. 4.
B. 3.
C. 5.

D. 2.

Câu 102. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √


3
3
a 6
a 3
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
24
24
48
8
Câu 103. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
A. f 0 (0) = 1.
B. f 0 (0) =
.
C. f 0 (0) = 10.
ln 10

D. f 0 (0) = ln 10.
Trang 8/10 Mã đề 1



Câu 104. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 120 cm2 .
C. 160 cm2 .
D. 1200 cm2 .
Câu 105. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
z
x+1 y−5
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
d:
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 2; −1).
B. ~u = (1; 0; 2).
C. ~u = (3; 4; −4).
D. ~u = (2; 1; 6).
Câu 106. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
Câu 107.
1
A. − .

2

1 − n2
[1] Tính lim 2
bằng?
2n + 1
1
B. .
3

C. 0.

Câu 108. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 2].
B. m ∈ [−1; 0].
C. m ∈ [0; 1].

D.
log23

1
.
2
q
x+ log23 x + 1+4m−1 =

D. m ∈ [0; 4].


Câu 109. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
.
B.
.
C. a3 .
D.
.
A.
6
24
12
Câu 110.
√ Thể tích của khối lăng
√ trụ tam giác đều có cạnh bằng 1 là:

3
3
3
3
A.
.
B.
.
C. .

D.
.
2
12
4
4
Câu 111. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Bốn mặt.
B. Một mặt.
C. Hai mặt.
D. Ba mặt.
Câu 112. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n3 lần.
B. 3n3 lần.
C. n lần.
D. n2 lần.
Câu 113. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = S h.
B. V = 3S h.
C. V = S h.
3
2


Câu 114. Tìm giá trị lớn nhất của
√ hàm số y = x + 3 + √6 − x
A. 3.
B. 3 2.

C. 2 3.

D. V = S h.
D. 2 +


3.

Câu 115. [4-1246d] Trong tất cả
√ các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn√nhất của |z|
A. 1.
B. 3.
C. 2.
D. 5.
Câu 116. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −10.
B. P = 10.
C. P = −21.
D. P = 21.
Câu 117. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (1; +∞).
B. Hàm số nghịch biến trên khoảng (−∞; 0).
C. Hàm số đồng biến trên khoảng (1; 2).
D. Hàm số nghịch biến trên khoảng (0; 1).
Câu 118. Tính lim
x→3

A. −3.

x2 − 9

x−3

B. +∞.

C. 3.

D. 6.
Trang 9/10 Mã đề 1


Câu 119. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung
điểm cạnh√AB, biết S H ⊥ (ABCD).√Thể tích khối chóp S .ABCD là
2a3 3
a3
a3
4a3 3
.
B.
.
C.
.
D.
.
A.
3
3
6
3
2mx + 1
1

Câu 120. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. 1.
B. −5.
C. −2.
D. 0.
Câu 121. Khối đa diện đều loại {3; 4} có số cạnh
A. 6.
B. 12.

C. 8.

D. 10.

Câu 122. Cho hình chóp S .ABCD có đáy ABCD là hình thang vuông tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
√ S .ABCD là
√ phẳng vng góc với (ABCD). Thể tích khối chóp
3

a3 3
a3 3
a
2
A.
.
B.
.

C. a3 3.
D.
.
2
4
2
Câu 123. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 91cm3 .
C. 48cm3 .
D. 84cm3 .
Câu 124. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 0, 8.
B. 7, 2.
C. 72.

D. −7, 2.

Câu 125. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −5.
B. −7.
C. −3.

D. Không tồn tại.
!
4x
1
2
2016

Câu 126. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T = 2016.
B. T = 1008.
C. T = 2017.
D. T =
.
2017
Câu 127. Hàm số f có nguyên hàm trên K nếu
A. f (x) xác định trên K.
B. f (x) liên tục trên K.
C. f (x) có giá trị lớn nhất trên K.
D. f (x) có giá trị nhỏ nhất trên K.
5
Câu 128. Tính lim
n+3
A. 3.
B. 0.
C. 1.
D. 2.
1
Câu 129. [1] Giá trị của biểu thức log √3
bằng

10
1
1
D. − .
A. 3.
B. −3.
C. .
3
3
3
2
x
Câu 130. [2]
2
√ Tìm m để giá trị nhỏ nhất của hàm số y = 2x + (m + 1)2 trên [0; 1] bằng √
A. m = ± 2.
B. m = ±1.
C. m = ±3.
D. m = ± 3.
!

!

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ

Mã đề thi 1
1.

C

2.

B

3.

C

4.

B

5.
7. A
9.

C
D

11.
C

13.
15. A


8.

B

10.

B

12.

D

14.

D

16.

17.
19.

D

6.

B

D

C


18.

B

20.

21.

C

22.

23.

C

24.

25.

B
B
C
B

26.

D


27. A

D

28.

C

30.

C

31. A

32.

C

33. A

34.

29.

C

35.

D


D

36. A

37. A

38.

D
D

39.

C

40.

41.

C

42.

C

43.

C

44.


C

45.

B

46.

D

47.

B

48.

D

49. A
51.

50. A
B

52.

53.
55.


D

B

54.

C

C

56. A

57. A

58.

59.

D

C

60. A

61. A

62.

B


63. A

64.

B

65.

66. A

C

68.

67. A
1

D


69.

D

70. A

71.

D


72. A

73.

B

75. A

74.

B

76.

B
B

77.

C

78.

79.

C

80.

81.


82. A

B

83.

D

84.

85.

D

86.

87.
89.

90.

B
D

95.

B

96. A


99. A
101. A

98.

B

100.

B

102. A

103.

D

104. A

B

108.

109.

D

112. A


113. A

114.
C

117.

D
B

116.
D

119. A
B

C

118.

D

120.

D

122. A
124.

123. A

125.
129.

B

110.

111. A
115.

C

106.

107. A

127.

B
C

94.
D

D
C

B

121.


B

92.

93.
97.

D

88.

C

91.

105.

C

D
B
D

2

D

126.


B

128.

B

130.

B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×