Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg 5 (5)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (152.98 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = x + ln x.
B. y0 = 1 − ln x.

C. y0 = 1 + ln x.
D. y0 = ln x − 1.
1
a
, với a, b ∈ Z. Giá trị của a + b là
Câu 2. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
4 b ln 3
A. 7.
B. 1.
C. 2.
D. 4.
Câu 3. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
x+1
Câu 4. Tính lim


bằng
x→−∞ 6x − 2
1
1
1
A. 1.
B. .
C. .
D. .
6
2
3
Câu 5. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc của
0
A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và BC
a 3

. Khi đó thể tích khối lăng trụ là
4 √



a3 3
a3 3
a3 3
a3 3
.
B.
.

C.
.
D.
.
A.
36
6
12
24
 π
Câu 6. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


2 π4
3 π6
1 π
A.
e .
B. 1.
C.
e .
D. e 3 .
2
2
2
x+3
Câu 7. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m

(0; +∞)?
A. 2.
B. 1.
C. Vô số.
D. 3.
Câu 8. [1] Giá trị của biểu thức 9log3 12 bằng
A. 24.
B. 144.
2n + 1
Câu 9. Tìm giới hạn lim
n+1
A. 1.
B. 0.

C. 2.

D. 4.

C. 3.

D. 2.

Câu 10. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a
A. lim
= .
B. lim [ f (x) + g(x)] = a + b.
x→+∞ g(x)

x→+∞
b
C. lim [ f (x) − g(x)] = a − b.
D. lim [ f (x)g(x)] = ab.
x→+∞

x→+∞

Câu 11. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −1.
B. m = 0.
C. m = −3.

D. m = −2.

Câu 12. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 8 lần.
B. Tăng gấp 6 lần.
C. Tăng gấp 4 lần.
D. Tăng gấp đôi.
Câu 13. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. −2 + 2 ln 2.
B. 4 − 2 ln 2.
C. e.

D. 1.
Trang 1/10 Mã đề 1



Câu 14. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −3.
B. 3.
C. −6.
D. 0.
Câu 15. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m > 0.
B. m < 0.
C. m , 0.
Câu 16. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; 2).
B. (0; +∞).

C. (−∞; 0) và (2; +∞). D. (−∞; 2).

Câu 17.
Z Các khẳng định nào sau
Z đây là sai?
A.
Z
C.

f (x)dx = F(x) +C ⇒
!0
f (x)dx = f (x).

D. m = 0.

f (u)dx = F(u) +C. B.


Z
Z

D.

Z

f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C.
Z
k f (x)dx = k
f (x)dx, k là hằng số.

Câu 18. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
.
B. log2 a =
.
C. log2 a = loga 2.
D. log2 a = − loga 2.
A. log2 a =
loga 2
log2 a
Câu 19. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. −6.
B. 6.
C. 5.
2


D. −5.

Câu 20. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
D. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
Câu 21. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 4 mặt. B. 4 đỉnh, 8 cạnh, 4 mặt. C. 4 đỉnh, 6 cạnh, 4 mặt. D. 3 đỉnh, 3 cạnh, 3 mặt.
Câu 22. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 9 mặt.
C. 7 mặt.

D. 6 mặt.

Câu 23. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; 2).
B. Hàm số nghịch biến trên khoảng (−∞; 2).
C. Hàm số nghịch biến trên khoảng (0; 2).
D. Hàm số đồng biến trên khoảng (0; +∞).
x
x+1
x−2 x−1
+
+
+
và y = |x + 1| − x − m (m là tham
Câu 24. [4-1212d] Cho hai hàm số y =
x−1

x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3].
B. [−3; +∞).
C. (−∞; −3).
D. (−3; +∞).
1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
Câu 25. [3-1132d] Cho dãy số (un ) với un =
n2 + 1
1
A. lim un = .
B. Dãy số un khơng có giới hạn khi n → +∞.
2
C. lim un = 1.
D. lim un = 0.
Câu 26. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt√bên (S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√ là
3
3
3
3
a 3
8a 3
8a 3
4a 3
.

B.
.
C.
.
D.
.
A.
9
9
3
9
Câu 27. Tính thể tích khối lập phương
biết tổng diện tích tất cả các mặt bằng 18.

A. 9.
B. 3 3.
C. 27.
D. 8.
Câu 28. Khối đa diện đều loại {3; 3} có số đỉnh
A. 4.
B. 2.

C. 3.

D. 5.
Trang 2/10 Mã đề 1


2−n
Câu 29. Giá trị của giới hạn lim

bằng
n+1
A. −1.
B. 1.
C. 2.
D. 0.
x+1
Câu 30. Tính lim
bằng
x→+∞ 4x + 3
1
1
A. .
B. .
C. 1.
D. 3.
3
4
Câu 31. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C) và (A0C 0 D) bằng




2a 3
a 3
a 3
A. a 3.
B.
.

C.
.
D.
.
2
3
2
Câu 32. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 2.
B. 5.
C. 3.
D. 1.
Câu 33. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −3 ≤ m ≤ 3.
B. m ≥ 3.
C. −2 ≤ m ≤ 2.
D. m ≤ 3.
2
2
2
1 + 2 + ··· + n
Câu 34. [3-1133d] Tính lim
n3
2
1
A. +∞.
B. .
C. .
D. 0.
3

3
Câu 35. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + 2 sin 2x.
B. 1 − sin 2x.
C. −1 + sin x cos x.
D. 1 + 2 sin 2x.
Câu 36. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. Vô nghiệm.
C. 1.
D. 2.
Câu 37. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 1.

B. 3.

C. 0.

D. 2.

Câu 38. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 2.
B. 0, 5.
C. 0, 4.
D. 0, 3.
Câu 39. [1] !Tập xác định của hàm số y != log3 (2x + 1) là

!
1
1
1
A. −∞; .
B. −∞; − .
C. − ; +∞ .
2
2
2

!
1
D.
; +∞ .
2

Câu 40. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. 4.
B. .
C. .
D. .
8
4
2
Câu 41. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].

(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
Trang 3/10 Mã đề 1


A. 4.

B. 1.

C. 3.


D. 2.


− 3m + 4 = 0 có nghiệm
3
9
C. 0 < m ≤ .
D. 0 ≤ m ≤ .
4
4

d = 30 , biết S BC là tam giác đều
Câu 43. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√

a 39
a 39
a 39
a 39
.
B.
.
C.
.
D.
.
A.
13
9
16
26

Câu 44. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

1
A. 25.
B. 5.
C. .
D. 5.
5
x−3 x−2 x−1
x
Câu 45. [4-1213d] Cho hai hàm số y =
+
+

+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (2; +∞).
B. (−∞; 2).
C. [2; +∞).
D. (−∞; 2].
Câu 42. [12215d] Tìm m để phương trình 4 x+
3
A. 0 ≤ m ≤ .
B. m ≥ 0.
4

1−x2

− 4.2 x+

1−x2

Câu 46. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 84cm3 .
B. 48cm3 .
C. 91cm3 .
D. 64cm3 .
Câu 47. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường

thẳng S B bằng

a 3
a
a
B. a.
C.
.
D. .
A. .
2
2
3
2x + 1
Câu 48. Tính giới hạn lim
x→+∞ x + 1
1
A. −1.
B. .
C. 1.
D. 2.
2
x2
Câu 49. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = .
B. M = e, m = 0.
C. M = e, m = 1.

D. M = , m = 0.
e
e
3
2
Câu 50. Cho hàm số y = x + 3x . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số nghịch biến trên khoảng (−2; 1).
C. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
8
Câu 51. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 64.
B. 96.
C. 82.
D. 81.
Câu 52. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 4).
B. (2; 4; 3).
C. (2; 4; 6).
D. (1; 3; 2).
Câu 53. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối lập phương.
B. Khối tứ diện đều.

C. Khối bát diện đều.

D. Khối 12 mặt đều.


Câu 54. Khẳng định nào sau đây đúng?
A. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ tứ giác đều là hình lập phương.
Trang 4/10 Mã đề 1


C. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ đứng là hình lăng trụ đều.
Câu 55. Tính lim
A. 1.

cos n + sin n
n2 + 1
B. +∞.

C. 0.

D. −∞.

Câu 56. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
2a
8a
5a
a
B.
.
C.

.
D.
.
A. .
9
9
9
9
Câu 57. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 2ac
3b + 3ac
3b + 2ac
A.
.
B.
.
C.
.
D.
.
c+1
c+3
c+2
c+2
9x
Câu 58. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1

A. 1.
B. −1.
C. .
D. 2.
2
log(mx)
= 2 có nghiệm thực duy nhất
Câu 59. [1226d] Tìm tham số thực m để phương trình
log(x + 1)
A. m < 0.
B. m < 0 ∨ m > 4.
C. m ≤ 0.
D. m < 0 ∨ m = 4.
Câu 60. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim f (x) = f (a).
B. f (x) có giới hạn hữu hạn khi x → a.
x→a

C. lim+ f (x) = lim− f (x) = a.

D. lim+ f (x) = lim− f (x) = +∞.
x→a
x→a
!
1
1
1
Câu 61. [3-1131d] Tính lim +
+ ··· +
1 1+2

1 + 2 + ··· + n
5
3
A. .
B. .
C. 2.
D. +∞.
2
2
x→a

x→a

Câu 62. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vơ nghiệm.
B. 2.
C. 3.
D. 1.
Câu 63. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −5.
B. x = 0.
C. x = −2.

D. x = −8.

Câu 64. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 12.
B. 27.
C. 3.
D. 10.

Z 1
Câu 65. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0

1
1
A. .
B. 1.
C. .
D. 0.
2
4
Câu 66. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 10 cạnh, 6 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
!
5 − 12x
Câu 67. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. Vơ nghiệm.
B. 2.
C. 1.
D. 3.
Câu 68. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Hai mặt.
B. Một mặt.

C. Ba mặt.

D. Bốn mặt.
Trang 5/10 Mã đề 1


Câu 69. Trong khơng gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu
! của A lên BC là
!
7
5
8
A. (2; 0; 0).
B.
; 0; 0 .
C.
; 0; 0 .
D.
; 0; 0 .
3
3
3
Câu 70. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.016.000.
B. 102.016.000.
C. 102.424.000.

D. 102.423.000.

Câu 71. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là √


a3
a3 3
a3 3
3
.
C.
.
D.
.
A. a 3.
B.
3
4
12
[ = 60◦ , S A ⊥ (ABCD).
Câu 72. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh
√ S C là a. Thể tích khối
√chóp S .ABCD là
3
3
3

a 3

a 2
a 2
A.
.
B.
.
C.
.
D. a3 3.
6
4
12
Câu 73. [3] Biết rằng giá trị lớn nhất của hàm số y =
số tự nhiên. Tính S = m2 + 2n3
A. S = 22.
B. S = 32.

ln2 x
m
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e

C. S = 135.

D. S = 24.

Câu 74.
!0 nào sau đây sai?
Z Mệnh đề

A.
f (x)dx = f (x).
Z
B. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

f (x)dx = F(x) + C.

C. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
D. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
π
Câu 75. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu thức T = a + b 3.


A. T = 4.
B. T = 3 3 + 1.
C. T = 2 3.
D. T = 2.
Câu 76. Khối đa diện đều loại {3; 3} có số cạnh
A. 8.
B. 5.

C. 4.

D. 6.

Câu 77. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng 2n.

B. Số mặt của khối chóp bằng 2n+1.
C. Số mặt của khối chóp bằng số cạnh của khối chóp.
D. Số đỉnh của khối chóp bằng 2n + 1.
Câu 78.
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh
Z đề nàoZsai?
A.
Z
C.

( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Z
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.

f (x)g(x)dx =

B.
Z
D.

f (x)dx g(x)dx.
Z
Z
( f (x) + g(x))dx =
f (x)dx + g(x)dx.

Câu 79. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (1; −3).

B. (−1; −7).
C. (2; 2).

D. (0; −2).
Trang 6/10 Mã đề 1


1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y


2 11 − 3
9 11 + 19
C. Pmin =
.
D. Pmin =
.
3
9

Câu 80. [12210d] Xét các số thực dương x, y thỏa mãn log3
Pmin của P = x +
√ y.

18 11 − 29
9 11 − 19
A. Pmin =
. B. Pmin =
.

21
9
Câu 81.! Dãy số nào sau đây có giới
!n hạn là 0?
n
4
1
A.
.
B.
.
e
3

!n
5
C.
.
3

!n
5
D. − .
3

Câu 82. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là −4.
B. Phần thực là 4, phần ảo là 1.
C. Phần thực là −1, phần ảo là 4.
D. Phần thực là 4, phần ảo là −1.


Câu 83. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.


√ tích khối chóp S .ABC3 √
3
a 6
a3 6
a3 2
a 6
.
B.
.
C.
.
D.
.
A.
18
6
36
6
!
3n + 2
2
Câu 84. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2

của S bằng
A. 5.
B. 2.
C. 4.
D. 3.
Câu 85. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối√chóp S .ABMN là



4a3 3
2a3 3
5a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
2
3
3
3
Câu 86.√Biểu thức nào sau đây khơng có nghĩa

−3

B. 0−1 .
C.
−1.
D. (−1)−1 .
A. (− 2)0 .
Câu 87. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 0.
B. 1.
C. e2016 .
D. 22016 .

Câu 88. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng



3a 38
3a
3a 58
a 38
A.
.
B.
.
C.
.
D.
.

29
29
29
29
Câu 89. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 2.
B. y(−2) = 6.
C. y(−2) = −18.
D. y(−2) = 22.
Câu 90. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 + 2e
1 − 2e
1 − 2e
1 + 2e
A. m =
.
B. m =
.
C. m =
.
D. m =
.
4 − 2e
4e + 2
4 − 2e
4e + 2
1
Câu 91. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3

A. 0 < m ≤ 1.
B. 2 < m ≤ 3.
C. 2 ≤ m ≤ 3.
D. 0 ≤ m ≤ 1.
log(mx)
Câu 92. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m ≤ 0.
B. m < 0.
C. m < 0 ∨ m > 4.
D. m < 0 ∨ m = 4.
Trang 7/10 Mã đề 1


Câu 93. Bát diện đều thuộc loại
A. {5; 3}.
B. {3; 4}.

C. {3; 3}.

D. {4; 3}.

Câu 94. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].

67
.
27
Câu 95. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng





a 6
A. a 6.
.
D. 2a 6.
B. a 3.
C.
2
Câu 96. Khối đa diện đều loại {3; 5} có số cạnh
A. 12.
B. 20.
C. 30.
D. 8.
A. −7.

B. −2.

C. −4.

D.

Câu 97. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.





5 13
B.
.
C. 2.
D. 2 13.
A. 26.
13
[ = 60◦ , S O
Câu 98. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a. Khoảng cách từ O đến (S
√ BC) bằng


a 57
2a 57
a 57
C.
A.
.
B. a 57.
.
D.
.
19
17
19
Câu 99. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 1.
B. 6.

C. −1.
D. 2.
x−3
bằng?
Câu 100. [1] Tính lim
x→3 x + 3
A. −∞.
B. 1.
C. 0.
D. +∞.
Câu 101. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
Câu 102. Khối đa diện đều loại {4; 3} có số cạnh
A. 30.
B. 20.

C. 10.

D. 12.

Câu 103. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 22 triệu đồng.
B. 3, 03 triệu đồng.

C. 2, 20 triệu đồng.
D. 2, 25 triệu đồng.

Câu 104. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả
bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. 64.
C. Vơ số.
D. 63.
Câu 105. Khối đa diện đều loại {4; 3} có số đỉnh
A. 6.
B. 8.
3
x −1
Câu 106. Tính lim
x→1 x − 1
A. 0.
B. 3.

C. 10.

D. 4.

C. −∞.

D. +∞.

Câu 107. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2

2
A. T = 4 + .
B. T = e + .
C. T = e + 3.
D. T = e + 1.
e
e
Trang 8/10 Mã đề 1


tan x + m
Câu 108. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. (−∞; 0] ∪ (1; +∞). B. (1; +∞).
C. [0; +∞).
D. (−∞; −1) ∪ (1; +∞).
Câu 109. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
√ tích khối chóp S .ABC

√là
√ với đáy và S C = a 3. 3Thể
3
3
2a 6

a 3
a3 6
a 3
.
B.
.
C.
.
D.
.
A.
2
9
4
12


4n2 + 1 − n + 2
Câu 110. Tính lim
bằng
2n − 3
3
D. 2.
A. +∞.
B. 1.
C. .
2
5
Câu 111. Tính lim
n+3

A. 0.
B. 3.
C. 1.
D. 2.
Câu 112. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
C. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
!4x
!2−x
2
3
Câu 113. Tập các số x thỏa mãn


3
2
"
!
"
!
#
#
2
2
2
2
A.
; +∞ .

B. − ; +∞ .
C. −∞; .
D. −∞; .
5
3
3
5
Câu 114. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa hai đường thẳng S B và AD bằng




a 2
a 2
B. a 3.
C.
A. a 2.
.
D.
.
3
2
Câu 115. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
B. Z
F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
u0 (x)
C.
dx = log |u(x)| + C.

u(x)
D. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Câu 116. Tính lim
x→2

A. 0.

x+2
bằng?
x
B. 3.

C. 2.

D. 1.

Câu 117. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
1
ab
ab
A. √
.
B. √
.
C. 2
.
.

D.

a + b2
a2 + b2
a2 + b2
2 a2 + b2
Câu 118. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = R \ {1; 2}.
B. D = (−2; 1).
C. D = [2; 1].

D. D = R.

Câu 119. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình chóp.
B. Hình tam giác.
C. Hình lập phương.

D. Hình lăng trụ.

2

Trang 9/10 Mã đề 1


Câu 120. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m ≥ 0.
B. m > 1.
C. m > 0.


D. m > −1.

Câu 121. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
.
B.
.
C.
.
D. a3 .
A.
6
24
12
Câu 122. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 5 mặt.
B. 4 mặt.
C. 3 mặt.
D. 6 mặt.
Câu 123. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; −1).
B. (1; +∞).
C. (−1; 1).

D. (−∞; 1).


Câu 124. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là


a3 3
a3 3
a3
a3 3
A.
.
B.
.
C.
.
D.
.
12
8
4
4
Câu 125. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 5 mặt. B. 6 đỉnh, 9 cạnh, 6 mặt. C. 5 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 6 cạnh, 6 mặt.
Câu 126. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. 1.
B. 0.

C. 2.


D. +∞.


Câu 127. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√ cho là



πa3 3
πa3 3
πa3 3
πa3 6
.
B. V =
.
C. V =
.
D. V =
.
A. V =
6
3
6
2
[ = 60◦ , S O
Câu 128. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S√BC) bằng


a 57
a 57
2a 57
A.
.
B.
.
C.
.
D. a 57.
19
17
19
Z 3
x
a
a
Câu 129. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 28.
B. P = −2.
C. P = 4.
D. P = 16.
Câu 130. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị

nhỏ nhất
√M + m

√ của hàm số. Khi đó tổng
A. 8 3.
B. 8 2.
C. 16.
D. 7 3.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
3.

2. A

C

4.

B

5.

6. A


C

7.

D

9.

D

10. A

11.

D

12. A

8.

13.

C

14. A

15.

C


16.

17. A

B

C

18. A
D

19.
21.

C

20.

B

22.

B

23. A

24. A

25. A


26.

27.

B

B

28. A

29. A

30.

31.

B

C

B

32. A

33. A

34.

35. A


36.

D

38.

D

37.

D

39.

C

40.

41.

C

42. A

43. A

C

C


44. A

45.

C

46.

D
D

47.

B

48.

49.

B

50.

C

52.

C


51.

D

53.

C

54.

C

55.

C

56.

C

57.

C

58. A

59.
61.

D


60. A
62.

C

63.

D

64.

65. A
67.

C
1

B
C

66.

D

68.

D



69.

D

71.

B

72.

73.

B

74.

75. A

76.

77. A

78.

79.
81.

D

84.


85. A

86.

87. A

88.
C

90.

91.

B

92.

93.

B

94.

95. A

D
B
C
D

C
B
C
B
D
B
C

96.

97.

B

98.

99.

B

100.

101.

B

102.

103. A


D
C
D

104. A
B

107.

C

109.

D

111. A
113.

C

82.

83. A

105.

B

80.


B

89.

C

70.

B

108.

B

110.

B

112.

B

114.

B
C

115.

106.


D
C

116.

117.

B

118.

D

119.

B

120.

D

121.

C

122.

B


123.

C

124.

B

126.

B

125. A
127.
129.

B
C

2

128.

C

130.

C




Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×