TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 11 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. [4-1245d] Trong tất cả √
các số phức z thỏa mãn hệ√thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
C. 10.
D. 2.
A. 1.
B. 2.
Câu 2. [1] Đạo hàm của hàm số y = 2 x là
1
1
A. y0 = x
.
B. y0 =
.
2 . ln x
ln 2
C. y0 = 2 x . ln 2.
√
√
Câu 3.√Tìm giá trị lớn nhất của hàm
√ số y = x + 3 + 6 − x
A. 3 2.
B. 2 3.
C. 3.
D. y0 = 2 x . ln x.
D. 2 +
√
3.
Câu 4. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
= 0.
B. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
vn
!
un
C. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
!
un
= +∞.
D. Nếu lim un = a > 0 và lim vn = 0 thì lim
vn
tan x + m
Câu 5. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
π
0; .
4
A. (−∞; −1) ∪ (1; +∞). B. [0; +∞).
C. (−∞; 0] ∪ (1; +∞). D. (1; +∞).
x−2 x−1
x
x+1
Câu 6. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3).
B. (−∞; −3].
C. (−3; +∞).
D. [−3; +∞).
Câu 7. [1] Giá trị của biểu thức 9log3 12 bằng
A. 4.
B. 24.
C. 2.
D. 144.
Câu 8. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −5.
B. −9.
C. −12.
D. −15.
Câu 9. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
C. .
D. .
A. 4.
B. .
8
2
4
Câu 10. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (II) và (III).
B. Cả ba mệnh đề.
C. (I) và (III).
D. (I) và (II).
Trang 1/11 Mã đề 1
Câu 11. Khối đa diện đều loại {3; 3} có số đỉnh
A. 2.
B. 5.
C. 4.
D. 3.
Câu 12. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
B. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
C. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Z
u0 (x)
D.
dx = log |u(x)| + C.
u(x)
Câu 13. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 27 m.
B. 25 m.
C. 387 m.
D. 1587 m.
Câu 14. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị nhỏ nhất trên K.
C. f (x) có giá trị lớn nhất trên K.
B. f (x) xác định trên K.
D. f (x) liên tục trên K.
Câu 15. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −5.
B. −7.
C. Không tồn tại.
D. −3.
!
3n + 2
2
+ a − 4a = 0. Tổng các phần tử
Câu 16. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
n+2
của S bằng
A. 2.
B. 5.
C. 4.
D. 3.
un
Câu 17. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. 1.
B. +∞.
C. 0.
D. −∞.
a
1
Câu 18. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 2.
B. 7.
C. 4.
D. 1.
Câu 19. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng
√
cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3
√
√
2 3
A. 2.
B. 1.
C. 3.
.
D.
3
Câu 20. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục ảo.
B. Hai đường phân giác y = x và y = −x của các góc tọa độ.
C. Trục thực.
D. Đường phân giác góc phần tư thứ nhất.
1
Câu 21. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; 3).
B. (−∞; 3).
C. (1; +∞).
D. (−∞; 1) và (3; +∞).
Câu 22. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của hình chóp S .ABCD với√mặt phẳng (AIC) có diện√tích là
√
2
11a2
a2 7
a2 5
a 2
A.
.
B.
.
C.
.
D.
.
4
32
8
16
Trang 2/11 Mã đề 1
1
Câu 23. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 luôn đồng biến trên
3
√
một đoạn có độ dài bằng 24.
A. m = −3.
B. m = 4.
C. m = −3, m = 4.
D. −3 ≤ m ≤ 4.
Câu 24. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất khơng thay đổi?
A. 17 tháng.
B. 18 tháng.
C. 15 tháng.
D. 16 tháng.
Câu 25. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 6 cạnh, 4 mặt. B. 6 đỉnh, 6 cạnh, 4 mặt. C. 4 đỉnh, 8 cạnh, 4 mặt. D. 3 đỉnh, 3 cạnh, 3 mặt.
Câu 26. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 18 lần.
B. Tăng gấp 9 lần.
C. Tăng gấp 27 lần.
D. Tăng gấp 3 lần.
cos n + sin n
n2 + 1
B. −∞.
C. 1.
!
1
1
1
+ ··· +
Câu 28. [3-1131d] Tính lim +
1 1+2
1 + 2 + ··· + n
3
A. +∞.
B. 2.
C. .
2
Câu 29. Khối chóp ngũ giác có số cạnh là
A. 12 cạnh.
B. 11 cạnh.
C. 9 cạnh.
Câu 27. Tính lim
A. 0.
D. +∞.
D.
5
.
2
D. 10 cạnh.
Câu 30. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
1
1
ab
A. 2
.
C. √
.
D. √
.
.
B. √
2
a +b
a2 + b2
2 a2 + b2
a2 + b2
Câu 31. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.
B. Vô nghiệm.
C. 1.
D. 3.
Câu 32. Dãy
!n số nào sau đây có giới
!n hạn là 0?
5
5
A. − .
B.
.
3
3
!n
1
C.
.
3
!n
4
D.
.
e
Câu 33. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém môn Toán nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm môn Tốn là
20
20
10
40
C50
.(3)30
C50
.(3)20
C50
.(3)40
C50
.(3)10
A.
.
B.
.
C.
.
D.
.
450
450
450
450
q
2
Câu 34. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [−1; 0].
B. m ∈ [0; 4].
C. m ∈ [0; 1].
D. m ∈ [0; 2].
Câu 35. Khối đa diện đều loại {5; 3} có số cạnh
A. 30.
B. 12.
C. 20.
D. 8.
Câu 36. Khối đa diện đều loại {4; 3} có số mặt
A. 10.
B. 8.
C. 6.
D. 12.
Trang 3/11 Mã đề 1
ln x p 2
1
Câu 37. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
1
8
8
1
A. .
B. .
C. .
D. .
3
3
9
9
2
Câu 38. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. e2016 .
B. 22016 .
C. 0.
D. 1.
!
!
!
x
1
2
2016
4
. Tính tổng T = f
+f
+ ··· + f
Câu 39. [3] Cho hàm số f (x) = x
4 +2
2017
2017
2017
2016
A. T =
.
B. T = 1008.
C. T = 2016.
D. T = 2017.
2017
Câu 40. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 3, 5 triệu đồng.
B. 70, 128 triệu đồng. C. 20, 128 triệu đồng. D. 50, 7 triệu đồng.
Câu 41. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
Câu 42. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
√
B. y = loga x trong đó a = 3 − 2.
A. y = log √2 x.
D. y = log 14 x.
C. y = log π4 x.
log2 240 log2 15
−
+ log2 1 bằng
log3,75 2 log60 2
B. 1.
C. 3.
Câu 43. [1-c] Giá trị biểu thức
A. −8.
D. 4.
2
x −9
Câu 44. Tính lim
x→3 x − 3
A. 3.
B. −3.
C. +∞.
D. 6.
Câu 45. Dãy số nào sau đây có giới hạn là 0?
n2 − 3n
1 − 2n
.
B. un =
.
A. un =
5n + n2
n2
n2 − 2
C. un =
.
5n − 3n2
n2 + n + 1
D. un =
.
(n + 1)2
Câu 46. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 6.
B. V = 3.
C. V = 5.
D. V = 4.
Câu 47. Khối đa diện đều loại {5; 3} có số mặt
A. 12.
B. 8.
C. 30.
D. 20.
Câu 48.
đề nào sau đây
Z [1233d-2] Mệnh Z
Z sai?
A.
Z
B.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
D.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
C.
1
bằng
Câu 49. [1] Giá trị của biểu thức log √3
10
1
1
A. .
B. − .
3
3
C. 3.
D. −3.
Trang 4/11 Mã đề 1
log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m < 0 ∨ m = 4.
D. m ≤ 0.
Câu 50. [1226d] Tìm tham số thực m để phương trình
A. m < 0.
B. m < 0 ∨ m > 4.
Câu 51. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a =
.
B. log2 a = − loga 2.
C. log2 a =
.
D. log2 a = loga 2.
log2 a
loga 2
Câu 52. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
A. f 0 (0) =
.
B. f 0 (0) = ln 10.
C. f 0 (0) = 10.
D. f 0 (0) = 1.
ln 10
9t
Câu 53. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 0.
B. Vô số.
C. 2.
D. 1.
Câu 54. Tính lim
2n2 − 1
3n6 + n4
A. 2.
B.
2
.
3
C. 1.
D. 0.
√
Câu 55. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng
√
√
√
3a
a 38
3a 38
3a 58
.
B.
.
C.
.
D.
.
A.
29
29
29
29
1
Câu 56. Hàm số y = x + có giá trị cực đại là
x
A. −2.
B. 2.
C. −1.
D. 1.
Câu 57. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 12.
B. 3.
C. 27.
2n + 1
Câu 58. Tính giới hạn lim
3n + 2
3
1
A. 0.
B. .
C. .
2
2
D. 10.
D.
2
.
3
Câu 59. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng
√
√
√
√
a 6
A. a 3.
B. 2a 6.
C. a 6.
D.
.
2
1
Câu 60. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 4.
B. 1.
C. 3.
D. 2.
x2 − 5x + 6
x→2
x−2
B. −1.
Câu 61. Tính giới hạn lim
A. 5.
C. 0.
Câu 62. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 − sin 2x.
B. −1 + 2 sin 2x.
C. 1 + 2 sin 2x.
Câu 63. Dãy số
!n nào có giới hạn bằng 0?
−2
A. un =
.
B. un = n2 − 4n.
3
!n
6
C. un =
.
5
D. 1.
D. −1 + sin x cos x.
D. un =
n3 − 3n
.
n+1
Trang 5/11 Mã đề 1
Câu 64. Bát diện đều thuộc loại
A. {3; 4}.
B. {5; 3}.
C. {3; 3}.
D. {4; 3}.
Câu 65. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên đúng. B. Cả hai câu trên sai.
C. Chỉ có (II) đúng.
D. Chỉ có (I) đúng.
Câu 66. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ là
√
√
√ Thể tích khối chóp S 3.ABC
3
a 2
a3 3
a3 3
a 3
.
B.
.
C.
.
D.
.
A.
6
12
12
4
x
Câu 67. Tính diện tích hình phẳng giới hạn bởi các đường
√ y = xe , y = 0, x = 1.
3
3
1
A. 1.
B. .
C.
.
D. .
2
2
2
mx − 4
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 68. Tìm m để hàm số y =
x+m
A. 34.
B. 45.
C. 67.
D. 26.
Câu 69. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
9
18
15
6
Câu 70. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e2 .
B. −2e2 .
C. 2e4 .
D. −e2 .
Câu 71. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −2.
B. x = −8.
C. x = −5.
D. x = 0.
Câu 72. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α
aα
A. β = a β .
B. aα+β = aα .aβ .
C. aα bα = (ab)α .
D. aαβ = (aα )β .
a
Câu 73. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vng
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 3
a3 5
a3 5
a3 5
A.
.
B.
.
C.
.
D.
.
12
12
6
4
Câu 74. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 2).
B. Hàm số nghịch biến trên khoảng (−∞; 2).
C. Hàm số đồng biến trên khoảng (0; +∞).
D. Hàm số đồng biến trên khoảng (0; 2).
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
B. xy = e − 1.
C. xy0 = −ey + 1.
D. xy0 = ey + 1.
Câu 75. [3-12217d] Cho hàm số y = ln
A. xy0 = −ey − 1.
Câu 76. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
23
1637
1079
1728
A.
.
B.
.
C.
.
D.
.
68
4913
4913
4913
Trang 6/11 Mã đề 1
!4x
!2−x
2
3
Câu 77. Tập các số x thỏa mãn
≤
là
#
" 3 ! 2
2
2
B.
; +∞ .
A. −∞; .
5
5
"
!
2
C. − ; +∞ .
3
#
2
D. −∞; .
3
Câu 78. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = (0; +∞).
B. D = R.
C. D = R \ {1}.
D. D = R \ {0}.
Câu 79. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác S AB đều và nằm trong mặt
Thể tích khối chóp
√ S .ABCD là
√ phẳng vng góc với 3(ABCD).
√
3
3
√
a 3
a 3
a 2
A. a3 3.
B.
.
C.
.
D.
.
4
2
2
√
Câu 80. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √
√
√
3
a 6
a 2
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
36
6
18
6
Câu 81. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
D. .
A. −2.
B. 2.
C. − .
2
2
1 3
Câu 82. [2D1-3] Cho hàm số y = − x + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2] ∪ [−1; +∞). B. −2 < m < −1.
C. −2 ≤ m ≤ −1.
D. (−∞; −2) ∪ (−1; +∞).
Câu 83. Khẳng định nào sau đây đúng?
A. Hình lăng trụ tứ giác đều là hình lập phương.
B. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ đứng là hình lăng trụ đều.
D. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
Câu 84. Tính lim
x→+∞
x−2
x+3
2
B. − .
C. −3.
D. 1.
3
Câu 85. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (0; 1).
B. (−1; 0).
C. (−∞; 0) và (1; +∞). D. (−∞; −1) và (0; +∞).
A. 2.
Câu 86. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|
√
√
√
√
12 17
A. 5.
B. 34.
C.
.
D. 68.
17
Câu 87. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 6 mặt. B. 5 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 6 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 5 mặt.
Câu 88. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD
√ = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng
√
√
a 2
a 2
A.
.
B.
.
C. 2a 2.
D. a 2.
4
2
Câu 89. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
A. lim [ f (x) + g(x)] = a + b.
B. lim [ f (x) − g(x)] = a − b.
x→+∞
x→+∞
f (x) a
C. lim [ f (x)g(x)] = ab.
D. lim
= .
x→+∞
x→+∞ g(x)
b
Trang 7/11 Mã đề 1
2
2
Câu 90.
số f (x) = 2sin x + 2cos x lần lượt là
√ [3-c] Giá trị nhỏ nhất và giá√trị lớn nhất của hàm √
A. 2 và 3.
B. 2 và 2 2.
C. 2 2 và 3.
D. 2 và 3.
Câu 91. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 11.
B. 4.
C. 12.
D. 10.
Câu 92. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = S h.
B. V = 3S h.
C. V = S h.
3
2
D. V = S h.
Câu 93. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 21.
B. P = 10.
C. P = −10.
D. P = −21.
Câu 94. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 46cm3 .
C. 27cm3 .
D. 72cm3 .
12 + 22 + · · · + n2
Câu 95. [3-1133d] Tính lim
n3
2
A. .
B. +∞.
3
Câu 96. Khối đa diện đều loại {3; 4} có số cạnh
A. 6.
B. 10.
C. 0.
D.
C. 12.
1
.
3
D. 8.
4
3
Câu 97. [1-c] Cho a là số thực dương .Giá trị của biểu thức a :
2
7
5
A. a 3 .
B. a 3 .
C. a 3 .
x+1
bằng
Câu 98. Tính lim
x→+∞ 4x + 3
1
A. 3.
B. .
C. 1.
3
√3
a2 bằng
5
D. a 8 .
D.
1
.
4
Câu 99. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 1200 cm2 .
C. 160 cm2 .
D. 120 cm2 .
!
x+1
Câu 100. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2017
2016
4035
A. 2017.
B.
.
C.
.
D.
.
2018
2017
2018
Câu 101. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 102. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 1.
B. Vơ số.
C. 2.
D. 3.
Câu 103. Tính lim
A. 1.
7n2 − 2n3 + 1
3n3 + 2n2 + 1
B. 0.
C.
7
.
3
2
D. - .
3
Câu 104. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√ của hàm số. Khi đó tổng M + m
√
√
A. 8 2.
B. 16.
C. 8 3.
D. 7 3.
Trang 8/11 Mã đề 1
Câu 105.
Cho hàm sốZf (x), g(x)Zliên tục trên R. Trong các
Z
Z mệnh đề sau, mệnhZđề nào sai? Z
A.
Z
C.
f (x)g(x)dx =
f (x)dx g(x)dx.
Z
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
( f (x) − g(x))dx =
B.
Z
D.
( f (x) + g(x))dx =
f (x)dx −
Z
f (x)dx +
g(x)dx.
Z
g(x)dx.
Câu 106. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 14 năm.
B. 12 năm.
C. 11 năm.
D. 10 năm.
Câu 107. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (1; +∞).
!
1
C. Hàm số nghịch biến trên khoảng ; 1 .
3
!
1
B. Hàm số đồng biến trên khoảng ; 1 .
3
!
1
D. Hàm số nghịch biến trên khoảng −∞; .
3
√
4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
C. 2 nghiệm.
D. 1 nghiệm.
Câu 108. [2] Phương trình log4 (x + 1)2 + 2 = log √2
A. 3 nghiệm.
B. Vơ nghiệm.
!
1
1
1
+
+ ··· +
Câu 109. Tính lim
1.2 2.3
n(n + 1)
3
C. 2.
A. 0.
B. .
2
D. 1.
√
Câu 110. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là √
√
3
3
3
√
3
a
a
3
a
A. a3 3.
.
C.
.
D.
.
B.
3
4
12
Câu 111. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 48cm3 .
B. 64cm3 .
C. 91cm3 .
D. 84cm3 .
1 − xy
Câu 112. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ
x + 2y
nhất Pmin của P√ = x + y.
√
√
√
9 11 + 19
18 11 − 29
2 11 − 3
9 11 − 19
A. Pmin =
. B. Pmin =
. C. Pmin =
.
D. Pmin =
.
9
21
3
9
Câu 113. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. n3 lần.
C. 2n3 lần.
D. 2n2 lần.
Câu 114. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
A. − 2 .
B. − .
C. −e.
e
e
D. −
1
.
2e
Câu 115. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
Thể tích khối chóp S .ABC √là
√
√ với đáy và S C = a 3.3 √
3
a 3
a 3
2a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
2
4
9
12
0 0 0 0
Câu 116.
a. Khoảng cách từ C đến √
AC 0 bằng
√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh √
a 6
a 6
a 3
a 6
A.
.
B.
.
C.
.
D.
.
2
7
2
3
Trang 9/11 Mã đề 1
Câu 117. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
B. 3.
C. 1.
D. .
A. .
2
2
3
2
Câu 118. Tập xác định của hàm số f (x) = −x + 3x − 2 là
A. [−1; 2).
B. (−∞; +∞).
C. (1; 2).
D. [1; 2].
Câu 119. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −3.
B. 3.
C. 0.
D. −6.
2
Câu 120. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
2
1
1
B. 3 .
C. 2 .
A. 3 .
2e
e
e
1
√ .
2 e
π π
Câu 121. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. −1.
B. 7.
C. 1.
D. 3.
D.
6
. Tính
Câu 122. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2 f (x3 ) − √
3x
+
1
Z 1
f (x)dx.
0
A. 2.
B. −1.
C. 6.
D. 4.
Câu 123. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng
√
√
√
a 3
a 3
2a 3
.
B. a 3.
.
D.
.
A.
C.
3
2
2
Câu 124. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√
√ là
3
3
3
3
8a 3
8a 3
4a 3
a 3
A.
.
B.
.
C.
.
D.
.
3
9
9
9
Câu 125. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 220 triệu.
B. 212 triệu.
C. 210 triệu.
D. 216 triệu.
Câu 126. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 21.
B. 22.
C. 23.
D. 24.
Câu 127. Khối đa diện đều loại {5; 3} có số đỉnh
A. 30.
B. 12.
C. 8.
D. 20.
Câu 128. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = 0.
B. m = −2.
C. m = −1.
D. m = −3.
Câu 129. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm cạnh.
B. Ba cạnh.
C. Bốn cạnh.
D. Hai cạnh.
2
Câu 130. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 7.
B. 6.
C. 5.
D. 8.
- - - - - - - - - - HẾT- - - - - - - - - Trang 10/11 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A
2.
3. A
4.
C
D
5.
D
6.
7.
D
8.
9.
D
10.
D
12.
D
14.
D
11.
C
13. A
B
C
15.
C
16.
17.
C
18.
B
20.
B
19. A
21.
D
23.
C
22.
C
24.
C
D
25. A
26.
27. A
28.
B
30.
B
29.
D
31. A
33.
C
32.
B
34. A
35. A
37.
39.
C
C
B
41.
36.
C
38.
C
40.
C
42. A
C
43. A
44.
D
45. A
46.
D
47. A
48.
49.
B
50.
51.
C
52.
53.
C
54.
55. A
57.
C
B
D
56. A
58.
B
59.
61.
B
C
B
60.
B
62.
B
63. A
64. A
65. A
66.
67. A
68. A
1
D
C
70.
D
72. A
D
74.
71.
B
73.
B
75.
B
76.
B
77.
C
78.
B
79.
C
80.
C
81. A
82.
C
83.
84.
D
86.
88.
85.
C
B
90.
92. A
87.
D
89.
D
D
D
C
95.
96.
C
97. A
D
104.
99. A
B
102.
101.
C
107.
108.
C
109.
B
C
113.
B
115.
116.
D
117. A
D
119. A
B
C
122.
D
B
D
120.
C
111.
114.
118.
D
105. A
B
112.
B
103.
C
106.
110.
C
93.
94.
100.
B
91.
C
98.
D
121.
D
C
123. A
124.
B
125.
126.
B
127.
128.
B
129.
130. A
2
B
D
B