Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg 5 (194)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (151.27 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Bát diện đều.
B. Nhị thập diện đều. C. Thập nhị diện đều. D. Tứ diện đều.
x+1
bằng
Câu 2. Tính lim
x→−∞ 6x − 2
1
1
1
A. .
B. .
C. .
D. 1.
2
6
3
Câu 3. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi
suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước đó.
Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết
rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền ra.
A. 216 triệu.


B. 212 triệu.
C. 210 triệu.
D. 220 triệu.
4x + 1
Câu 4. [1] Tính lim
bằng?
x→−∞ x + 1
A. −4.
B. −1.
C. 2.
D. 4.
3

Câu 5. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e5 .
B. e2 .
C. e.


4n2 + 1 − n + 2
bằng
Câu 6. Tính lim
2n − 3
3
A. .
B. +∞.
C. 2.
2

D. e3 .


D. 1.

2

Câu 7. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log3 2.
B. 3 − log2 3.
C. 1 − log2 3.

D. 2 − log2 3.

Câu 8. Bát diện đều thuộc loại
A. {5; 3}.
B. {3; 4}.

D. {3; 3}.

C. {4; 3}.

Câu 9. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim− f (x) = f (b).
B. lim+ f (x) = f (a) và lim− f (x) = f (b).
x→a

x→b

x→a


x→b

C. lim+ f (x) = f (a) và lim+ f (x) = f (b).

Câu 10. [1] Tính lim
x→3

A. 0.

x−3
bằng?
x+3
B. 1.

x→a

x→b

x→a

x→b

D. lim− f (x) = f (a) và lim+ f (x) = f (b).

C. +∞.

D. −∞.

Câu 11. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác S AB đều và nằm trong mặt

Thể tích khối chóp
√ S .ABCD là
√ phẳng vng góc với 3(ABCD).

3
3

a 3
a 3
a 2
A. a3 3.
B.
.
C.
.
D.
.
4
2
2
Câu 12. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD
√ là
3
10a 3
A. 10a3 .
B. 40a3 .
C.
.
D. 20a3 .

3
Câu 13. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
ln 2
A. .
B. 2.
C.
.
D. 1.
2
2
Trang 1/10 Mã đề 1


x+2
Câu 14. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. Vô số.
B. 3.
C. 2.
D. 1.
Câu 15. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 3.

B. 0.


C. 1.

D. 2.

tan x + m
Câu 16. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. (−∞; 0] ∪ (1; +∞). B. (1; +∞).
C. (−∞; −1) ∪ (1; +∞). D. [0; +∞).
Câu 17. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 46cm3 .
C. 72cm3 .
D. 27cm3 .
1
Câu 18. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 1.
B. 4.
C. 3.
D. 2.
Câu 19. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9

11
A. 5.
B. .
C.
.
D. 7.
2
2
!2x−1
!2−x
3
3
Câu 20. Tập các số x thỏa mãn


5
5
A. [3; +∞).
B. (−∞; 1].
C. [1; +∞).
D. (+∞; −∞).
Câu 21. [1] Giá trị của biểu thức 9log3 12 bằng
A. 2.
B. 24.

C. 144.

D. 4.
[ = 60◦ , S A ⊥ (ABCD).
Câu 22. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD

Biết rằng√ khoảng cách từ A đến cạnh
√ S C là a. Thể tích khối chóp S .ABCD là

3
3

a 2
a3 2
a 3
3
.
B.
.
C. a 3.
D.
.
A.
6
4
12
Câu 23. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 50, 7 triệu đồng.
B. 70, 128 triệu đồng. C. 20, 128 triệu đồng. D. 3, 5 triệu đồng.
Câu 24. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 3, 55.
B. 15, 36.

C. 24.
D. 20.
Câu 25. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 3.
B. 1.
C. 0.

D. 2.

Câu 26. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng



a 2
a 2
A.
.
B. a 3.
C.
.
D. a 2.
3
2
Trang 2/10 Mã đề 1


Câu 27. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Một mặt.
B. Bốn mặt.

C. Ba mặt.
Câu 28. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối tứ diện đều.

D. Hai mặt.

C. Khối 12 mặt đều.

D. Khối lập phương.

Câu 29. Cho chóp S .ABCD có đáy ABCD là hình vuông cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là

3

a 3
a3
a3 3
A.
.
B.
.
C.
.
D. a3 3.
12
4
3
2

x −9
Câu 30. Tính lim
x→3 x − 3
A. −3.
B. 6.
C. +∞.
D. 3.
1
Câu 31. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (−∞; 1) và (3; +∞). B. (−∞; 3).
C. (1; 3).
D. (1; +∞).
Câu 32. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tam giác.
B. Một khối chóp tam giác, một khối chóp tứ giác.
C. Hai khối chóp tứ giác.
D. Một khối chóp tam giác, một khối chóp ngữ giác.
Câu 33. Khối đa diện đều loại {3; 3} có số cạnh
A. 6.
B. 4.

D. 8.
Z 1
6
2
3
. Tính
f (x)dx.
Câu 34. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √

0
3x + 1
A. 2.

B. 6.

C. 5.

C. 4.

D. −1.

Câu 35. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
B. m > .
C. m < .
D. m ≤ .
A. m ≥ .
4
4
4
4
Z 2
ln(x + 1)
Câu 36. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2

1
A. 0.
B. −3.
C. 3.
D. 1.
2
3
7n − 2n + 1
Câu 37. Tính lim 3
3n + 2n2 + 1
2
7
A. - .
B. .
C. 0.
D. 1.
3
3
Câu 38. Khối đa diện đều loại {5; 3} có số mặt
A. 20.
B. 8.
C. 12.
D. 30.
5
Câu 39. Tính lim
n+3
A. 3.
B. 0.
C. 2.
D. 1.

Câu 40. Dãy số nào sau đây có giới hạn là 0?
n2 − 3n
1 − 2n
A. un =
.
B. un =
.
2
n
5n + n2

C. un =

n2 − 2
.
5n − 3n2

Câu 41. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 3 mặt.
C. 4 mặt.

D. un =

n2 + n + 1
.
(n + 1)2

D. 6 mặt.


Câu 42. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √

a3 3
a3 3
a3 3
a3
A.
.
B.
.
C.
.
D.
.
4
12
8
4
Trang 3/10 Mã đề 1


Câu 43. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e4 .
B. 2e2 .
C. −e2 .
D. −2e2 .
Câu 44. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).

B. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
Câu 45.
Z Trong các khẳng định sau, khẳng định nào sai? Z
1
dx = ln |x| + C, C là hằng số.
B.
dx = x + C, C là hằng số.
A.
Z x
Z
xα+1
C.
0dx = C, C là hằng số.
D.
xα dx =
+ C, C là hằng số.
α+1
Câu 46. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. .
B. 3.
C. 2e + 1.
e
Câu 47. Khối đa diện đều loại {4; 3} có số đỉnh
A. 10.
B. 6.
C. 8.


D. 2e.
D. 4.

Câu 48. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 21.
B. 22.
C. 24.
D. 23.
2
m
ln x
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
Câu 49. [3] Biết rằng giá trị lớn nhất của hàm số y =
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 32.
B. S = 22.
C. S = 24.
D. S = 135.
Câu 50. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = 0.
B. m = −3.
C. m = −1.

D. m = −2.

Câu 51. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm

cạnh AB, biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là√
a3
2a3 3
4a3 3
a3
.
B.
.
C.
.
D.
.
A.
3
3
3
6
Câu 52. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là

3
3

a 15
a 5
a3 6
3
A.

.
B.
.
C. a 6.
D.
.
3
3
3
Câu 53. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối tứ diện đều.
C. Khối bát diện đều. D. Khối 12 mặt đều.
!x
1
1−x
Câu 54. [2] Tổng các nghiệm của phương trình 3 = 2 +

9
A. − log3 2.
B. 1 − log2 3.
C. − log2 3.
D. log2 3.
Câu 55. Hàm số f có nguyên hàm trên K nếu
A. f (x) liên tục trên K.
B. f (x) xác định trên K.
C. f (x) có giá trị nhỏ nhất trên K.
D. f (x) có giá trị lớn nhất trên K.
2mx + 1
1

trên đoạn [2; 3] là − khi m nhận giá trị bằng
Câu 56. Giá trị lớn nhất của hàm số y =
m−x
3
A. 1.
B. −5.
C. −2.
D. 0.
Trang 4/10 Mã đề 1


Câu 57. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 6.
B. 1.
C. −1.

D. 2.

Câu 58. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?
A. 15 tháng.
B. 18 tháng.
C. 16 tháng.
D. 17 tháng.
Câu 59. Khối đa diện đều loại {3; 4} có số đỉnh
A. 10.
B. 8.


C. 6.

D. 4.

C. 2.

D. 1.

Câu 61.! Dãy số nào sau đây có giới
!n hạn là 0?
n
4
1
A.
.
B.
.
e
3

!n
5
C. − .
3

!n
5
D.
.
3


Câu 62.
! định nào sau đây là sai?
Z Các khẳng

Z

Z

Câu 60. Giá trị của lim(2x2 − 3x + 1) là
x→1

A. 0.

B. +∞.

0

f (x)dx = f (x).

A.
Z
C.

B.

f (x)dx = F(x) +C ⇒

Z


f (u)dx = F(u) +C. D.

Câu 63. [1-c] Giá trị của biểu thức
A. 4.

log7 16
log7 15 − log7

B. −4.

15
30

Z

f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C.
Z
k f (x)dx = k
f (x)dx, k là hằng số.

bằng
C. −2.

D. 2.

Câu 64. Khối đa diện đều loại {3; 5} có số mặt
A. 30.
B. 20.
C. 12.

D. 8.
x
x−3 x−2 x−1
+
+
+
và y = |x + 2| − x − m (m là tham
Câu 65. [4-1213d] Cho hai hàm số y =
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2].
B. (2; +∞).
C. [2; +∞).
D. (−∞; 2).
Câu 66. Phát biểu nào sau đây là sai?
1
= 0.
nk
D. lim un = c (un = c là hằng số).

Câu 67. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. Vô số.
C. 63.
D. 64.




x=t




Câu 68. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)




z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
A. (x − 3)2 + (y + 1)2 + (z + 3)2 = .
B. (x + 3)2 + (y + 1)2 + (z + 3)2 = .
4
4
9
9
2
2
2
2
2
2

C. (x + 3) + (y + 1) + (z − 3) = .
D. (x − 3) + (y − 1) + (z − 3) = .
4
4
A. lim qn = 0 (|q| > 1).
1
C. lim = 0.
n

B. lim

Trang 5/10 Mã đề 1


Câu 69. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x+1 y−4 z−4
x−2 y−3 z+4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x y−2 z−3

x y z−1
.
B. =
=
.
A. = =
1 1
1
2
3
−1
x−2 y−2 z−3
x−2 y+2 z−3
C.
=
=
.
D.
=
=
.
2
3
4
2
2
2
Câu 70. Cho z là nghiệm của phương trình√ x2 + x + 1 = 0. Tính P =√z4 + 2z3 − z
−1 + i 3
−1 − i 3

.
C. P =
.
D. P = 2.
A. P = 2i.
B. P =
2
2
Câu 71. Khối đa diện đều loại {4; 3} có số mặt
A. 8.
B. 12.

C. 10.

D. 6.
2

2

sin x
Câu 72.
+ 2cos x lần
√ [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x)
√ =2
√ lượt là
A. 2 và 3.
B. 2 và 3.
C. 2 và 2 2.
D. 2 2 và 3.
1

Câu 73. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 luôn đồng biến trên
3

một đoạn có độ dài bằng 24.
A. m = −3.
B. m = −3, m = 4.
C. −3 ≤ m ≤ 4.
D. m = 4.

Câu 74. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {5; 3}.
B. {4; 3}.
C. {3; 5}.

D. {3; 4}.

Câu 75. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m > .
B. m ≤ .
C. m ≥ .
D. m < .
4
4
4
4
Câu 76. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng

A. −2.
B. 2.
C. 4.

D. −4.

Câu 77. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
C. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
Câu 78. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 10 mặt.
C. 8 mặt.

D. 4 mặt.

Câu 79. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 10 năm.
B. 11 năm.
C. 12 năm.
D. 14 năm.
Câu 80. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
=

=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vuông góc với đường thẳng
d:
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (3; 4; −4).
B. ~u = (2; 2; −1).
C. ~u = (2; 1; 6).
D. ~u = (1; 0; 2).
Câu 81. Tính lim

x→+∞

A. −3.

x−2
x+3
B. 1.

C. 2.

2
D. − .
3
Trang 6/10 Mã đề 1


Câu 82. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính

f (2) + f (4)?
A. 11.
B. 4.
C. 12.
D. 10.
Câu 83. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 387 m.
B. 25 m.
C. 1587 m.
D. 27 m.
p
ln x
1
Câu 84. Gọi F(x) là một nguyên hàm của hàm y =
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
1
8
1
8
A. .
B. .
C. .
D. .
3

3
9
9
Câu 85. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun √
z.



5 13
A.
.
B. 2 13.
C. 2.
D. 26.
13

Câu 86. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị ngun dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. 64.
C. Vô số.
D. 62.
1
Câu 87. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
A. xy0 = −ey + 1.

B. xy0 = ey + 1.
C. xy0 = ey − 1.
D. xy0 = −ey − 1.
Câu 88. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 + 2e
1 + 2e
A. m =
.
B. m =
.
C. m =
.
4e + 2
4 − 2e
4e + 2

D. m =

1 − 2e
.
4 − 2e

Câu 89. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là −1.
B. Phần thực là −1, phần ảo là 4.
C. Phần thực là −1, phần ảo là −4.
D. Phần thực là 4, phần ảo là 1.
Câu 90. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó,√các kích

√ thước của hình hộp là
A. 6, 12, 24.
B. 2 3, 4 3, 38.
C. 2, 4, 8.
D. 8, 16, 32.
Câu 91. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 8 lần.
B. Tăng gấp 6 lần.
C. Tăng gấp đôi.
D. Tăng gấp 4 lần.
x+3
Câu 92. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 3.
B. 2.
C. 1.
D. Vơ số.
Câu 93. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 1.
B. m ≥ 0.
C. m > 0.

D. m > −1.

Câu 94. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hồn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng

5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 22 triệu đồng.
B. 2, 25 triệu đồng.
C. 3, 03 triệu đồng.
D. 2, 20 triệu đồng.
Trang 7/10 Mã đề 1


12 + 22 + · · · + n2
Câu 95. [3-1133d] Tính lim
n3
2
A. .
B. 0.
3
Câu 96. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = ln x − 1.
B. y0 = 1 + ln x.

C.

1
.
3

C. y0 = x + ln x.

Câu 97. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. −2 + 2 ln 2.

B. 1.
C. 4 − 2 ln 2.

D. +∞.
D. y0 = 1 − ln x.
D. e.

Câu 98. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4




a3 3
a3 3
a3 3
a3 3
.
B.
.
C.
.
D.
.

A.
36
24
6
12
Câu 99. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; −3).
B. A0 (−3; −3; 3).
C. A0 (−3; 3; 1).
D. A0 (−3; 3; 3).
Câu 100. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 21.
B. P = −10.
C. P = 10.
D. P = −21.
Câu 101. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a = loga 2.
B. log2 a =
.
C. log2 a =
.
D. log2 a = − loga 2.
log2 a
loga 2
Câu 102. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m , 0.
B. m < 0.

C. m = 0.

D. m > 0.

Câu 103. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.
B. 3.
C. 1.
D. Vô nghiệm.
Câu 104. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

1
A. .
B. 25.
C. 5.
5


D. 5.

Câu 105. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 1.
B. e2016 .
C. 0.
D. 22016 .
Câu 106. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; +∞).
B. (4; 6, 5].
C. [6, 5; +∞).

Câu 107. Tính lim
A. 1.

cos n + sin n
n2 + 1
B. −∞.

C. +∞.

D. (−∞; 6, 5).

D. 0.

Câu 108. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi
G la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
15
9
18
6
Câu 109. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.

A. y(−2) = 2.
B. y(−2) = −18.
C. y(−2) = 6.
D. y(−2) = 22.
Trang 8/10 Mã đề 1


Câu 110. ZCho hai hàm Zy = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
B. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z
C. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
A. Nếu

f 0 (x)dx =

Câu 111. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn

[1; e]. Giá trị của T = M + m bằng
2
2
A. T = 4 + .
B. T = e + 1.
C. T = e + .
D. T = e + 3.
e
e
Câu 112. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 12.
B.
.
C. 18.
D. 27.
2




Câu 113. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
9
3
3
B. m ≥ 0.
C. 0 ≤ m ≤ .
D. 0 ≤ m ≤ .
A. 0 < m ≤ .

4
4
4
Câu 114. [2] Cho hình chóp S .ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa
√ hai đường thẳng BD và√S C bằng


a 6
a 6
a 6
A.
.
B.
.
C. a 6.
.
D.
3
6
2
2

2

Câu 115. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
3
9
A. 3.

B. 1.
C. .
D. .
2
2
Câu 116. Khối đa diện đều loại {3; 3} có số mặt
A. 3.
B. 4.
C. 5.
D. 2.
Câu 117. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 1 nghiệm.
B. 3 nghiệm.
C. Vô nghiệm.

D. 2 nghiệm.

Câu 118. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm cạnh.
B. Bốn cạnh.
C. Ba cạnh.

D. Hai cạnh.

x2 −4x+5

Câu 119. [2] Tổng các nghiệm của phương trình 3
= 9 là
A. 4.
B. 2.

C. 5.

D. 3.

x2 +2x

Câu 120. [2] Tổng các nghiệm của phương trình 2
= 82−x là
A. 6.
B. 5.
C. −6.

D. −5.

Câu 121. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m < 3.
B. m > 3.
C. m ≥ 3.
D. m ≤ 3.
d = 30◦ , biết S BC là tam giác đều
Câu 122. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39

A.
.
B.
.
C.
.
D.
.
16
9
13
26
Câu 123. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
Trang 9/10 Mã đề 1


(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 1.

B. 2.

C. 4.

Câu 124. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 3}.
B. {3; 4}.
C. {5; 3}.


D. 3.
D. {4; 3}.

Câu 125. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối

√ chóp S .ABCD là

3
3
a 3
a3 3
a3 2
a 6
.
B.
.
C.
.
D.
.
A.
48
48
24
16
Câu 126. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.

C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 127. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = 3S h.
B. V = S h.
C. V = S h.
D. V = S h.
3
2
2
Câu 128. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x + x − y − 12 = 0. Tìm giá trị nhỏ nhất của
P = xy + x + 2y + 17
A. −15.
B. −5.
C. −9.
D. −12.
Câu 129. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 1.
B. 2.
C. 3.
D. Vô số.
Câu 130. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là −4.
B. Phần thực là 3, phần ảo là 4.
C. Phần thực là −3, phần ảo là 4.
D. Phần thực là 3, phần ảo là −4.
- - - - - - - - - - HẾT- - - - - - - - - -


Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
C

1.
3.

2.

B

5. A
7.
9.

D

13.

4.

D

6.


D

8.
12.

C

D

14.

B

15.

D

16.

17.

D

18. A

19.

B

10. A


B

11.

B

B

C
B

20.

C

21.

C

22.

B

23.

C

24.


B

25.

C

26.

27.

28.

B

29.

C
D

30.

B

31. A

32.

B

33. A


34.

C

D

35.

36.

37. A
39.

B

38.
40.

B

42.

C

C
B

43.


C

45.

44. A
46.

B

47.

48.

B

49. A

50.

D

51.

52.

D

53.

54.


D

58.

C
C
D

57. A
59.

C

60. A
62.

D

55. A

C

56.

64.

C

C

B

61.

B

63.

B

65.

66. A

67. A

68. A

69. A
1

C

C


70.

D


71.

72.

D

73.

B

75.

B

C

74.

D

76. A

77. A

78. A

79.

B


81.

B

80.

D

82.

83.

C

84.

D

85. A

86.

D

87.

88. A

89. A


90. A

91. A

92. A

93.

94. A

95.

96.

B

D
C

D
C

97.

D
D

98.

D


99.

100.

D

101.

C

103. A

102. A
104.

B

105.

C

106.

B

107.

109.


B

110.

C
C

D

111.

D

112.

113.

D

114.

B

116.

B

115.

C


117.

D

118.
120.

119. A
121.

C

123.
125.

D
B

127.
129.

C

C
B

122.

C


124.

C

126.

D

128.

D

130.

2

D

C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×