Tải bản đầy đủ (.pdf) (13 trang)

Đề ôn toán thptqg 5 (423)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (156.82 KB, 13 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

!2x−1
!2−x
3
3
Câu 1. Tập các số x thỏa mãn


5
5
A. (+∞; −∞).
B. [1; +∞).

C. [3; +∞).

D. (−∞; 1].

Câu 2. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 1.
B. +∞.

C. 2.



D. 3.

Câu 3. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
x+3
nghịch biến trên khoảng
Câu 4. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x−m
(0; +∞)?
A. Vô số.
B. 3.
C. 2.
D. 1.
Câu 5. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .
D. k = .
A. k = .
6
15

18
9
log(mx)
Câu 6. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m > 4.
B. m ≤ 0.
C. m < 0 ∨ m = 4.
D. m < 0.
Câu 7. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Hai đường phân giác y = x và y = −x của các góc tọa độ.
B. Trục ảo.
C. Đường phân giác góc phần tư thứ nhất.
D. Trục thực.
Câu 8. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
5
23
9
13
.
B. − .
C. −
.
D.
.
A.
100
16

100
25
Câu 9. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
A. 2a 6.
B. a 3.
C.
.
D. a 6.
2
Câu 10. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim f (x) = f (a).
B. lim+ f (x) = lim− f (x) = +∞.
x→a
x→a
x→a
C. f (x) có giới hạn hữu hạn khi x → a.
D. lim+ f (x) = lim− f (x) = a.
x→a

x→a

1
Câu 11. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?

x
+
1
A. xy0 = ey − 1.
B. xy0 = −ey + 1.
C. xy0 = −ey − 1.
D. xy0 = ey + 1.
Câu 12. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4
Trang 1/10 Mã đề 1





a3 3
a3 3
a3 3
A.
.
B.
.
C.
.

6
12
36
Câu 13. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 0.
B. m > 1.
C. m > −1.


a3 3
D.
.
24
D. m ≥ 0.

[ = 60◦ , S O
Câu 14. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ Khoảng cách từ A đến (S√BC) bằng
√ với mặt đáy và S O = a.

a 57
2a 57
a 57
.
B.
.
C.
.
D. a 57.

A.
19
17
19
1 − xy
Câu 15. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x +
√ y.



18 11 − 29
9 11 + 19
9 11 − 19
2 11 − 3
A. Pmin =
. B. Pmin =
. C. Pmin =
. D. Pmin =
.
21
9
9
3
Câu 16. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2

giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 27 m.
B. 1587 m.
C. 387 m.
D. 25 m.
Câu 17. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S√B bằng
a
a
a 3
.
B. a.
C. .
D. .
A.
2
3
2
2

Câu 18. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 5.
B. 7.
C. 6.
2
x − 3x + 3
Câu 19. Hàm số y =
đạt cực đại tại
x−2
A. x = 3.

B. x = 1.
C. x = 0.

D. 8.
D. x = 2.

Câu 20. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 0.
B. 1.
C. 22016 .
D. e2016 .
Câu 21. Trong các mệnh đề dưới đây, mệnh đề nào
! sai?
un
A. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn !
un
= 0.
B. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
vn
C. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
D. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
Câu 22. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?

A. Khơng có.
B. Có hai.
C. Có một.
D. Có vơ số.
Câu 23. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 21.
B. 23.
C. 22.
D. 24.
Câu 24. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 3.
B. 2.
C. 1.

D. Vô nghiệm.
Trang 2/10 Mã đề 1


Câu 25. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = R \ {1; 2}.
B. D = (−2; 1).
C. D = [2; 1].
2

Câu 26. Khối đa diện đều loại {3; 3} có số cạnh
A. 8.
B. 4.


D. D = R.

C. 5.

D. 6.
0

0

0

Câu 27. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A B C D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; −3).
B. A0 (−3; 3; 3).
C. A0 (−3; 3; 1).
D. A0 (−3; −3; 3).
Câu 28. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất

√M + m
√ của hàm số. Khi đó tổng
B. 8 3.
C. 8 2.
D. 16.
A. 7 3.

Câu 29. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị nhỏ nhất của biểu thức P = x + 2y thuộc tập nào dưới
" đây?

!
"
!
5
5
A. (1; 2).
B. [3; 4).
C. 2; .
D.
;3 .
2
2
Câu 30.
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh
Z đề nào sai?
( f (x) − g(x))dx =

A.
Z
C.

( f (x) + g(x))dx =

f (x)dx −
Z

f (x)dx +

g(x)dx.


k f (x)dx = f

B.

Z

Z
g(x)dx.

D.

f (x)g(x)dx =

Z

f (x)dx, k ∈ R, k , 0.
Z
f (x)dx g(x)dx.

Câu 31. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a

a3 5
a3 15
a3
a3 15
.
B.
.
C.

.
D.
.
A.
5
25
25
3
2x + 1
Câu 32. Tính giới hạn lim
x→+∞ x + 1
1
A. 1.
B. −1.
C. 2.
D. .
2
Câu 33. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
23
1728
1637
1079
A.
.
B.
.
C.
.
D.

.
68
4913
4913
4913
2

2

sin x
Câu 34.
và giá trị lớn nhất của hàm số f (x)
+ 2cos x lần lượt là
√ [3-c] Giá trị nhỏ nhất √
√ =2
A. 2 2 và 3.
B. 2 và 3.
C. 2 và 2 2.
D. 2 và 3.

Câu 35. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
A. 68.
B. 34.
C. 5.

D.
.
17
1
Câu 36. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; 3).
B. (1; +∞).
C. (−∞; 1) và (3; +∞). D. (−∞; 3).
Câu 37. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 3.
B. 1.
C. 2.
D. 7.
Câu 38. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. R.
C. (0; 2).
Z 2
ln(x + 1)
Câu 39. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. 0.
B. −3.
C. 1.

D. (2; +∞).


D. 3.
Trang 3/10 Mã đề 1


Câu 40. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt√bên (S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√ là
3
3
3
3
8a 3
4a 3
8a 3
a 3
.
B.
.
C.
.
D.
.
A.
9
3
9
9
Câu 41. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [1; +∞).

B. [−3; 1].
C. (−∞; −3].
D. [−1; 3].
1

Câu 42. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R.
B. D = (1; +∞).
C. D = R \ {1}.

D. D = (−∞; 1).

Câu 43. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một mơn nằm cạnh nhau là
2
9
1
1
A. .
B.
.
C. .
D.
.
5
10
5
10
Câu 44. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là

27
.
D. 18.
A. 27.
B. 12.
C.
2
Câu 45. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số nghịch biến trên khoảng (−2; 1).
D. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
Câu 46. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
B. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
C. Số cạnh của khối chóp bằng số mặt của khối chóp.
D. Số đỉnh của khối chóp bằng số mặt của khối chóp.
Câu 47. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (1; +∞).
B. (−∞; −1).
C. (−∞; 1).
Câu 48. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 3ac
3b + 2ac
A.
.
B.
.
C.

.
c+2
c+1
c+2
Câu 49. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 2.
B. 3.
C. 0.

D. (−1; 1).

D.

3b + 2ac
.
c+3

D. 1.

Câu 50. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (0; 1).
B. (−∞; 0) và (1; +∞). C. (−1; 0).
D. (−∞; −1) và (0; +∞).
Câu 51. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 10.
B. P = −21.
C. P = −10.
D. P = 21.
Câu 52. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vô nghiệm.

B. 2.
C. 3.
D. 1.



x = 1 + 3t




Câu 53. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua




z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương trình là
Trang 4/10 Mã đề 1





x = 1 + 7t





A. 
y=1+t




z = 1 + 5t




x = −1 + 2t




B. 
y = −10 + 11t




z = 6 − 5t

.

.





x = 1 + 3t




C. 
y = 1 + 4t




z = 1 − 5t

.




x = −1 + 2t




D. 
y = −10 + 11t





z = −6 − 5t

.

Câu 54. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 3.
B. 4.
C. 8.
D. 6.
Câu 55. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 8%.
B. 0, 5%.
C. 0, 7%.
D. 0, 6%.
Câu 56. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.

B. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
C. Cả ba đáp án trên.
D. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
! x3 −3mx2 +m
1
nghịch biến trên
Câu 57. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
π
khoảng (−∞; +∞)

A. m , 0.
B. m ∈ R.
C. m = 0.
D. m ∈ (0; +∞).
Câu 58. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 3 đỉnh, 3 cạnh, 3 mặt. B. 6 đỉnh, 6 cạnh, 4 mặt. C. 4 đỉnh, 8 cạnh, 4 mặt. D. 4 đỉnh, 6 cạnh, 4 mặt.
Câu 59.! Dãy số nào sau đây có giới! hạn là 0?
n
n
5
4
A.
.
B. − .
e
3
x2 − 5x + 6
x→2
x−2
B. 1.

!n
1
C.
.
3

!n
5
D.

.
3

C. 0.

D. 5.

Câu 60. Tính giới hạn lim
A. −1.

Câu 61. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −1.
B. m = −3.
C. m = −2.

D. m = 0.

Câu 62. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc√với đáy và S C = a 3. √
Thể tích khối chóp S .ABC√là

3
3
2a 6
a 3
a3 3
a3 6
A.
.

B.
.
C.
.
D.
.
9
4
2
12
Câu 63. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; 2).
B. Hàm số đồng biến trên khoảng (0; +∞).
C. Hàm số nghịch biến trên khoảng (−∞; 2).
D. Hàm số nghịch biến trên khoảng (0; 2).
Câu 64. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 12 mặt đều.

C. Khối tứ diện đều.

D. Khối lập phương.

Câu 65. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 − 2e
1 + 2e
A. m =
.
B. m =
.

C. m =
.
4 − 2e
4e + 2
4 − 2e

D. m =

Câu 66.
√ Thể tích của khối lăng√trụ tam giác đều có cạnh bằng 1 là:
3
3
3
A.
.
B.
.
C. .
12
4
4


3
D.
.
2

1 + 2e
.

4e + 2

Trang 5/10 Mã đề 1


Câu 67. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
z
x+1 y−5
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
d:
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 2; −1).
B. ~u = (1; 0; 2).
C. ~u = (3; 4; −4).
D. ~u = (2; 1; 6).
Câu 68. Khối đa diện đều loại {3; 4} có số mặt
A. 8.
B. 6.

C. 12.

D. 10.

Câu 69. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu

của B, C lên các cạnh AC, AB. Tọa độ hình chiếu
!
! của A lên BC là
!
7
8
5
A.
; 0; 0 .
B. (2; 0; 0).
C.
; 0; 0 .
D.
; 0; 0 .
3
3
3
Câu 70. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 3, 5 triệu đồng.
B. 20, 128 triệu đồng. C. 70, 128 triệu đồng. D. 50, 7 triệu đồng.
Câu 71. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R.
B. D = R \ {0}.
x−2
Câu 72. Tính lim
x→+∞ x + 3
A. 2.
B. −3.


C. D = R \ {1}.

D. D = (0; +∞).

2
C. − .
3

D. 1.

π
Câu 73. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu thức T = a + b 3.


A. T = 2.
B. T = 3 3 + 1.
C. T = 2 3.
D. T = 4.
!
1
1
1
Câu 74. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n

3
5
A. .
B. +∞.
C. .
D. 2.
2
2
Câu 75. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (I) đúng.
B. Cả hai đều đúng.

C. Chỉ có (II) đúng.

D. Cả hai đều sai.

Câu 76. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 5}.
B. {4; 3}.
C. {3; 4}.

D. {5; 3}.

Câu 77. Khối đa diện đều loại {5; 3} có số đỉnh
A. 8.
B. 30.


D. 12.

C. 20.

Câu 78. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
2

A. 6.

B. 4.
−2x2

Câu 79. [2-c] Giá trị lớn nhất của hàm số y = xe
1
1
A. √ .
B. 2 .
e
2 e

3

Z

6
3x + 1

C. 2.

D. −1.


trên đoạn [1; 2] là
2
C. 3 .
e

D.

. Tính

1

f (x)dx.
0

1
.
2e3
Trang 6/10 Mã đề 1


Z
Câu 80. Cho

1

xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b

0


A. 1.

B.

1
.
4

C. 0.

D.

1
.
2

[ = 60◦ , S A ⊥ (ABCD).
Câu 81. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh

√ S C là a. Thể tích khối chóp S .ABCD là

a3 3
a3 2
a3 2
3
.
B.
.
C. a 3.

.
A.
D.
12
6
4


4n2 + 1 − n + 2
Câu 82. Tính lim
bằng
2n − 3
3
A. 1.
B. +∞.
C. .
D. 2.
2
8
Câu 83. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 96.
B. 81.
C. 64.
D. 82.
Câu 84. Cho z là√nghiệm của phương trình√ x2 + x + 1 = 0. Tính P = z4 + 2z3 − z
−1 − i 3
−1 + i 3
A. P =
.

B. P =
.
C. P = 2i.
D. P = 2.
2
2
Câu 85. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. 5.
B. −6.
C. 6.
2

D. −5.

Câu 86. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
ln 2
A. 1.
B. .
C. 2.
D.
.
2
2
1
Câu 87. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3

một đoạn có độ dài bằng 24.
A. m = 4.

B. −3 ≤ m ≤ 4.
C. m = −3, m = 4.
D. m = −3.
Câu 88. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = 4 + .
B. T = e + 3.
C. T = e + .
D. T = e + 1.
e
e
2
Câu 89. [2]√Tìm m để giá trị nhỏ nhất của hàm số y = 2x3 + (m√
+ 1)2 x trên [0; 1] bằng 2
A. m = ± 3.
B. m = ±1.
C. m = ± 2.
D. m = ±3.

Câu 90. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = S h.
B. V = 3S h.
C. V = S h.
2
3


D. V = S h.

Câu 91. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P hoặc d ⊥ P.
B. d song song với (P).
C. d nằm trên P.
D. d ⊥ P.
Câu 92. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
A. 2.
B. −2.
C. .
D. − .
2
2
Câu 93. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
Trang 7/10 Mã đề 1


(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên

A. Chỉ có (I) đúng.

B. Chỉ có (II) đúng.

4x + 1
bằng?
x→−∞ x + 1
B. −1.

C. Cả hai câu trên đúng. D. Cả hai câu trên sai.

Câu 94. [1] Tính lim
A. 4.

C. −4.

D. 2.

Câu 95. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 3.

B. 4.

C. 1.

D. 2.


Câu 96. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.423.000.
B. 102.424.000.
C. 102.016.000.
D. 102.016.000.
Câu 97. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
ab
1
ab
.
D. √
A. √
.
B. √
.
C. 2
.
2
a +b
a2 + b2
2 a2 + b2
a2 + b2
Câu 98. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai mặt.

B. Năm mặt.
C. Bốn mặt.

D. Ba mặt.

Câu 99. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm cạnh.
B. Bốn cạnh.
C. Hai cạnh.

D. Ba cạnh.

1 − n2
Câu 100. [1] Tính lim 2
bằng?
2n + 1
1
1
A. − .
B. .
C. 0.
2
3
Câu 101. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 3.
B. 5.
C. 2.

x2 + 3x + 5
Câu 102. Tính giới hạn lim

x→−∞
4x − 1
1
1
A. − .
B. 0.
C. .
4
4

D.

1
.
2

D. 1.

D. 1.

Câu 103. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi
M, N và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,
√ N, P bằng



14 3
20 3
A.

.
B. 8 3.
C.
.
D. 6 3.
3
3
Câu 104.
√ [4-1245d] Trong tất cả
√ các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
A. 2.
B. 10.
C. 2.
D. 1.
Trang 8/10 Mã đề 1


7n2 − 2n3 + 1
3n3 + 2n2 + 1
7
2
A. 0.
B. .
C. - .
D. 1.
3
3
Câu 106. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng (S AB). Thiết diện của

√ hình chóp S .ABCD với
√mặt phẳng (AIC) có diện
√tích là
2
2
2
2
11a
a 2
a 5
a 7
A.
.
B.
.
C.
.
D.
.
32
4
16
8
q
2
Câu 107. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [−1; 0].

B. m ∈ [0; 4].
C. m ∈ [0; 2].
D. m ∈ [0; 1].
Câu 105. Tính lim

Câu 108. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. −7, 2.
B. 7, 2.
C. 72.

D. 0, 8.

Câu 109. Khối đa diện đều loại {3; 5} có số mặt
A. 30.
B. 20.
C. 12.
D. 8.
x−2 x−1
x
x+1
Câu 110. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là

A. [−3; +∞).
B. (−3; +∞).
C. (−∞; −3].
D. (−∞; −3).
Câu 111. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 9 năm.
B. 10 năm.
C. 8 năm.
D. 7 năm.
Câu 112.
√ [4-1246d] Trong tất cả các số phức z thỏa mãn√|z − i| = 1. Tìm giá trị lớn nhất của |z|
A. 5.
B. 1.
C. 3.
D. 2.
x
x−3 x−2 x−1
+
+
+
và y = |x + 2| − x − m (m là tham
Câu 113. [4-1213d] Cho hai hàm số y =
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2].

B. (−∞; 2).
C. [2; +∞).
D. (2; +∞).
Câu 114. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 22.
B. y(−2) = 2.
C. y(−2) = −18.
D. y(−2) = 6.
Câu 115. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 14.
B. ln 10.
C. ln 12.
D. ln 4.
Câu 116. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 13.
B. 13.
C. 2020.
D. log2 2020.
Câu 117. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Trang 9/10 Mã đề 1


Các mệnh đề đúng là
A. (I) và (II).


B. (I) và (III).

C. Cả ba mệnh đề.

D. (II) và (III).

Câu 118. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là


a3 2
a3 6
a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
48
16
48
24
Câu 119. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1

1
1
A. m ≥ .
B. m > .
C. m < .
D. m ≤ .
4
4
4
4
Câu 120. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 210 triệu.
B. 216 triệu.
C. 212 triệu.
D. 220 triệu.
!
5 − 12x
= 2 có bao nhiêu nghiệm thực?
Câu 121. [2] Phương trình log x 4 log2
12x − 8
A. Vơ nghiệm.
B. 2.
C. 1.
D. 3.
!
!

!
1
2
2016
4x
. Tính tổng T = f
+f
+ ··· + f
Câu 122. [3] Cho hàm số f (x) = x
4 +2
2017
2017
2017
2016
A. T =
.
B. T = 2016.
C. T = 1008.
D. T = 2017.
2017
Câu 123. Khối đa diện đều loại {3; 4} có số đỉnh
A. 4.
B. 10.
C. 6.
D. 8.
Câu 124. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
8a
a

5a
2a
.
B.
.
C. .
D.
.
A.
9
9
9
9
Câu 125. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tứ giác.
B. Một khối chóp tam giác, một khối chóp ngữ giác.
C. Hai khối chóp tam giác.
D. Một khối chóp tam giác, một khối chóp tứ giác.
Câu 126. Mệnh đề nào sau đây sai?
A. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Z
B. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
!0
Z
C.
f (x)dx = f (x).

f (x)dx = F(x) + C.

D. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).

Câu 127. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lập phương.
B. Hình chóp.
C. Hình lăng trụ.

D. Hình tam giác.

Câu 128. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. (1; 2).
B. (−∞; +∞).
C. [−1; 2).

D. [1; 2].

Câu 129. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
.
B. −4.
C. −7.
D. −2.
A.
27
Trang 10/10 Mã đề 1


Câu 130.
√ Thể tích của tứ diện đều
√cạnh bằng a
a3 2
a3 2

A.
.
B.
.
4
6


a3 2
C.
.
12


a3 2
D.
.
2

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 11/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

B


2.

3.

D

4.

6.

C

7. A

8.

C

9.

10. A
12.

B

D
C

13.

15.

C

16. A
B

20. A
22.

B

11. A

14.
18.

C

D

17.

B

19.

B

21. A

B

24.

23.

C
D

25.

C

26.

D

27.

28.

D

29.

30.

D

31.


C

33.

C

32.

C

B
D

D

35.

34. A
36.

C

37.

38.

C

39.


B

41.

B

43.

B
B

40.
42.

D
B

44.

D

45.

46.

D

47.


48. A

D

49.

50.

C

52.

D

54. A
56.

C

B

58.

D

60. A

C

51.


B

53.

B

55.

C

57.

C

59.

C

61.

C

62.

D

63. A

64.


D

65.

B

67.

B

66.

B

68. A

69.
1

C


70.

71. A

B

72.


D

73.

74.

D

75.

C

77.

C

76. A
78.

79.

B

80.
82. A

83.

88.


C

92.

89.
C

D
C
B

91. A

B

C

93.

94. A
96.

B

87.

B

90.


D

85.

D

86.

B

81.

D

84.

D

95. A
B

97. A

98.

D

99.


100. A

101.

102. A

103.

104.

D

105.

106.

D

107. A

108. A

109.

110.

C

112.


C
D
C
B

111. A
D

114.

D

113.

C

115. A

C

116. A

117. A

118. A

119.

D


120.

C

121.

C

122.

C

123.

C

124.

B

126.
128.
130.

D
B
C

2


125.

D

127.

D

129.

D



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×