Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg 5 (200)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (150.8 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 3 mặt.
C. 6 mặt.

D. 4 mặt.

Câu 2. Tính thể tích khối lập phương biết tổng diện tích tất
√ cả các mặt bằng 18.
A. 8.
B. 27.
C. 3 3.
D. 9.
Câu 3. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4
đường thẳng d :
=
=
và d0 :
=
=


2
3
−5
3
−2
−1
x y−2 z−3
x−2 y+2 z−3
=
=
.
B. =
=
.
A.
2
2
2
2
3
−1
x y z−1
x−2 y−2 z−3
C. = =
.
D.
=
=
.
1 1

1
2
3
4
Câu 4. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai ngun hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (II) sai.

B. Câu (III) sai.

C. Khơng có câu nào D. Câu (I) sai.
sai.

Câu 5. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
A. − 2 .
B. −e.
C. − .
e
2e

1
D. − .
e

Câu 6. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?

A. Số cạnh của khối chóp bằng số mặt của khối chóp.
B. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
C. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
D. Số đỉnh của khối chóp bằng số mặt của khối chóp.
Câu 7. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A. −2.
B.
.
C. −4.
D. −7.
27
Câu 8. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2]. Giá
trị của biểu thức P = (m2 − 4M)2019
A. 1.
B. 0.
C. e2016 .
D. 22016 .
Câu 9. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 70, 128 triệu đồng. B. 20, 128 triệu đồng. C. 50, 7 triệu đồng.
D. 3, 5 triệu đồng.
2

Câu 10. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 3.
B. 2.
C. 5.


D. 4.
Trang 1/10 Mã đề 1


Câu 11.

[3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23
√ i
h
3

0 có ít nhất một nghiệm thuộc đoạn 1; 3
A. m ∈ [0; 1].
B. m ∈ [0; 2].

C. m ∈ [0; 4].

q
x+ log23 x + 1+4m−1 =

D. m ∈ [−1; 0].

Câu 12. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 8%.
B. 0, 5%.
C. 0, 7%.
D. 0, 6%.
Câu 13. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?

A. Hàm số nghịch biến trên khoảng (0; 1).
B. Hàm số nghịch biến trên khoảng (−∞; 0).
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số đồng biến trên khoảng (1; 2).
Câu 14. Khối đa diện đều loại {4; 3} có số đỉnh
A. 10.
B. 8.

C. 6.

D. 4.

Câu 15. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của√|z + 2 + i|



12 17
A.
.
B. 5.
C. 68.
D. 34.
17
Câu 16. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = 0.
B. m = −1.
C. m = −2.
D. m = −3.
Câu 17. Hàm số nào sau đây khơng có cực trị

1
x−2
.
B. y = x + .
C. y = x4 − 2x + 1.
A. y =
2x + 1
x
Câu 18. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 5 mặt.
C. 6 mặt.
Câu 19. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 1 nghiệm.
B. 3 nghiệm.
C. 2 nghiệm.
2−n
Câu 20. Giá trị của giới hạn lim
bằng
n+1
A. 0.
B. −1.
C. 1.

D. y = x3 − 3x.
D. 4 mặt.
D. Vô nghiệm.

D. 2.


Câu 21. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 10 cạnh, 6 mặt.
Câu 22. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 21.
B. P = 10.
C. P = −10.
D. P = −21.
Câu 23. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 2.
B. y(−2) = 22.
C. y(−2) = −18.
D. y(−2) = 6.
Câu 24. Tính diện tích hình phẳng giới hạn bởi các đường y = xe x , y = 0, x = 1. √
1
3
3
A. .
B. 1.
C. .
D.
.
2
2
2
Câu 25. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 0.

B. 9.
C. 13.
D. Khơng tồn tại.

Câu 26. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng



3a 38
a 38
3a 58
3a
A.
.
B.
.
C.
.
D.
.
29
29
29
29
Trang 2/10 Mã đề 1


Câu 27. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị

A. m ≥ 0.
B. m > 1.
C. m > −1.

D. m > 0.

Câu 28. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {2}.
B. {5}.
C. {3}.
D. {5; 2}.
Câu 29. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là 4.
B. Phần thực là 4, phần ảo là −1.
C. Phần thực là −1, phần ảo là −4.
D. Phần thực là 4, phần ảo là 1.
Câu 30. Khối đa diện đều loại {5; 3} có số mặt
A. 12.
B. 8.

C. 20.

D. 30.

Câu 31. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là 4.
B. Phần thực là 3, phần ảo là 4.
C. Phần thực là 3, phần ảo là −4.
D. Phần thực là −3, phần ảo là −4.
Câu 32. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

A. Hai mặt.
B. Ba mặt.
C. Năm mặt.

D. Bốn mặt.

Câu 33.
!0 nào sau đây sai?
Z Mệnh đề
A.
f (x)dx = f (x).
B. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
C. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a;Zb).
D. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
log2 240 log2 15

+ log2 1 bằng
log3,75 2 log60 2
B. 4.
C. 3.

f (x)dx = F(x) + C.

Câu 34. [1-c] Giá trị biểu thức
A. −8.

D. 1.

Câu 35. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1

A. f 0 (0) = ln 10.
B. f 0 (0) =
.
C. f 0 (0) = 10.
D. f 0 (0) = 1.
ln 10
Câu 36. Nếu khơng sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Bốn tứ diện đều và một hình chóp tam giác đều.
B. Một tứ diện đều và bốn hình chóp tam giác đều.
C. Năm tứ diện đều.
D. Năm hình chóp tam giác đều, khơng có tứ diện đều.
Câu 37. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
A. 9.
B. .
C. 6.
D. .
2
2
Câu 38. Khối đa diện đều loại {3; 5} có số đỉnh
A. 8.
B. 30.
C. 12.
D. 20.
log(mx)
Câu 39. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất

log(x + 1)
A. m ≤ 0.
B. m < 0 ∨ m = 4.
C. m < 0 ∨ m > 4.
D. m < 0.
Câu 40. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 6).
B. (2; 4; 3).
C. (2; 4; 4).
D. (1; 3; 2).
Trang 3/10 Mã đề 1


Câu 41. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
Câu 42. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng số cạnh của khối chóp.
B. Số đỉnh của khối chóp bằng 2n + 1.
C. Số cạnh của khối chóp bằng 2n.
D. Số mặt của khối chóp bằng 2n+1.
x−3
bằng?
Câu 43. [1] Tính lim
x→3 x + 3
A. +∞.
B. −∞.


C. 1.

D. 0.

Câu 44. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tứ giác.
B. Một hình chóp tam giác và một hình chóp tứ giác.
C. Hai hình chóp tam giác.
D. Một hình chóp tứ giác và một hình chóp ngũ giác.

2
Câu 45. Thể tích của khối lập phương

cạnh
bằng
a

3


2a
2
A. V = 2a3 .
B.
.
C. V = a3 2.
D. 2a3 2.
3

Câu 46. Khối đa diện đều loại {3; 3} có số cạnh
A. 6.
B. 4.
C. 5.
D. 8.
2n − 3
Câu 47. Tính lim 2
bằng
2n + 3n + 1
A. 0.
B. −∞.
C. 1.
D. +∞.
Câu 48. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
5
23
9
13
A.
.
B. − .
C. −
.
D.
.
100
16
100
25

Câu 49. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = S h.
B. V = S h.
C. V = S h.
D. V = 3S h.
3
2
π
Câu 50. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu thức T = a + b 3.


A. T = 4.
B. T = 2.
C. T = 2 3.
D. T = 3 3 + 1.
1 − n2
Câu 51. [1] Tính lim 2
bằng?
2n + 1
1
1
1
A. − .
B. .
C. 0.

D. .
2
3
2
Câu 52. Cho hình chóp S .ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối


√ chóp S .ABCD là
3
3
a 3
a 3
a3 6
a3 2
A.
.
B.
.
C.
.
D.
.
48
24
48
16
cos n + sin n
Câu 53. Tính lim
n2 + 1

A. 1.
B. −∞.
C. +∞.
D. 0.
Trang 4/10 Mã đề 1


Câu 54. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a = loga 2.
B. log2 a = − loga 2.
C. log2 a =
.
D. log2 a =
.
log2 a
loga 2
Câu 55. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
B. T = e + 3.
C. T = 4 + .
D. T = e + 1.
A. T = e + .
e
e
2x + 1
Câu 56. Tính giới hạn lim

x→+∞ x + 1
1
B. −1.
C. 1.
D. 2.
A. .
2
Câu 57. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng



a 6
a 6
a 6
A.
.
B.
.
C.
.
D. a 6.
6
3
2
Câu 58. Cho hình chóp S .ABCD có đáy ABCD là hình thang vuông tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt phẳng vng góc với (ABCD).
Thể tích khối chóp
√ S .ABCD là


3
3
3

a 3
a 2
a 3
C.
.
B. a3 3.
.
D.
.
A.
2
4
2
Câu 59. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
B. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
!
un
C. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
!vn
un

D. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
Câu 60. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên khoảng (−2; 1).
B. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
D. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
Câu 61. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

B. aαβ = (aα )β .
C. aα bα = (ab)α .
D. aα+β = aα .aβ .
A. β = a β .
a
Câu 62. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −9.
B. −15.
C. −12.
D. −5.


Câu 63. Tìm giá trị lớn nhất của√hàm số y = x + 3 + 6 −√x

A. 3.
B. 3 2.
C. 2 + 3.
D. 2 3.


Câu 64. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị
" nhỏ! nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới đây?
5
5
A. 2; .
B.
;3 .
C. (1; 2).
D. [3; 4).
2
2
!4x
!2−x
2
3
Câu 65. Tập các số x thỏa mãn


#
" 3
! 2
#
"
!
2
2
2
2

A. −∞; .
B. − ; +∞ .
C. −∞; .
D.
; +∞ .
5
3
3
5
Trang 5/10 Mã đề 1


2

2

sin x
Câu 66.
+ 2cos x lần lượt là
√ [3-c] Giá trị nhỏ nhất và giá√trị lớn nhất của hàm√số f (x) = 2
A. 2 2 và 3.
B. 2 và 2 2.
C. 2 và 3.
D. 2 và 3.
4x + 1
Câu 67. [1] Tính lim
bằng?
x→−∞ x + 1
A. 4.
B. 2.

C. −1.
D. −4.

Câu 68. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích khối chóp S .ABCD là √


2a3 3
a3 3
a3 3
3
.
B. a 3.
.
D.
.
C.
A.
3
6
3
Câu 69. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. Không tồn tại.
B. −3.
C. −5.

D. −7.

Câu 70. Giá trị cực đại của hàm số y = x3 − 3x + 4 là

A. 6.
B. −1.
C. 2.

D. 1.

Câu 71. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (2; +∞).
B. (−∞; 1).
C. (0; 2).

D. R.

Câu 72. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể tích của khối chóp S .ABC√ theo a


a3 15
a3 15
a3 5
a3
A.
.
B.
.
C.
.
D.
.
3

5
25
25
Câu 73. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; −1).
B. (−∞; 1).
C. (1; +∞).

D. (−1; 1).

Câu 74. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể tích khối chóp S .ABC là √


a3 3
a3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
4
4
8

12
q
2
Câu 75. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].
B. m ∈ [0; 1].
C. m ∈ [−1; 0].
D. m ∈ [0; 2].
Câu 76. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 8π.
B. 16π.
C. V = 4π.
D. 32π.
1
Câu 77. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 < m ≤ 3.
B. 0 ≤ m ≤ 1.
C. 0 < m ≤ 1.
D. 2 ≤ m ≤ 3.
Câu 78. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {0}.
B. D = R \ {1}.
Câu 79. Tìm giới hạn lim
A. 0.


2n + 1
n+1
B. 3.

C. D = (0; +∞).

D. D = R.

C. 1.

D. 2.

Câu 80. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.016.000.
B. 102.424.000.
C. 102.423.000.
D. 102.016.000.
Trang 6/10 Mã đề 1


!2x−1
!2−x
3
3
Câu 81. Tập các số x thỏa mãn



5
5
A. (−∞; 1].
B. [1; +∞).
C. [3; +∞).

D. (+∞; −∞).

Câu 82. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (−∞; 6, 5).
B. (4; +∞).
C. [6, 5; +∞).

D. (4; 6, 5].

Câu 83. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều.

D. Khối tứ diện đều.

C. Khối 20 mặt đều.

Câu 84. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; 8).
B. A(4; −8).
C. A(−4; −8)(.
D. A(−4; 8).
Câu 85. Trong khơng gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu

của B, C lên các cạnh AC, AB. Tọa độ hình chiếu
!
! của A lên BC là
!
7
5
8
; 0; 0 .
B. (2; 0; 0).
C.
; 0; 0 .
D.
; 0; 0 .
A.
3
3
3
Câu 86. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 − 2; m = 1.
B. M = e−2 + 2; m = 1.
C. M = e−2 + 1; m = 1.
D. M = e2 − 2; m = e−2 + 2.
Câu 87. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 18.
B. 27.
C. 12.
D.
.

2



x = 1 + 3t




Câu 88. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua




z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là












x
=
1
+
7t
x
=
−1
+
2t
x
=
−1
+
2t
x = 1 + 3t

















A. 
.
B. 
y=1+t
y = −10 + 11t . C. 
y = −10 + 11t . D. 
y = 1 + 4t .
















z = 1 + 5t
z = 6 − 5t
z = −6 − 5t
z = 1 − 5t
3a

, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

2a
a 2
a
a
.
B.
.
C. .
D. .
A.
3
3
3
4
x−2 x−1
x
x+1
Câu 90. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2

số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3).
B. [−3; +∞).
C. (−∞; −3].
D. (−3; +∞).
Câu 89. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =

Câu 91. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 3.

B. 2.

C. 1.

Câu 92. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 3.
B. 27.
C. 10.

1
3|x−1|

= 3m − 2 có nghiệm duy

D. 4.
D. 12.
Trang 7/10 Mã đề 1



Câu 93. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −e2 .
B. 2e2 .
C. −2e2 .
D. 2e4 .
Câu 94. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm cạnh.
B. Ba cạnh.
C. Bốn cạnh.

D. Hai cạnh.
! x3 −3mx2 +m
1
nghịch biến trên
Câu 95. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
π
khoảng (−∞; +∞)
A. m , 0.
B. m ∈ R.
C. m ∈ (0; +∞).
D. m = 0.
√3
Câu 96. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga a bằng
1
1
A. − .
B. 3.
C. −3.
D. .

3
3
Câu 97. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 7 mặt.
B. 9 mặt.
C. 6 mặt.
D. 8 mặt.
Câu 98. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết
a 5. Thể tích khối chóp √
S .ABCD là
√ S H ⊥ (ABCD), S A =
2a3
2a3 3
4a3
4a3 3
.
B.
.
C.
.
D.
.
A.
3
3
3
3
Câu 99.! Dãy số nào sau đây có giới

!n hạn là 0?
!n
!n
n
1
5
4
5
A.
.
B.
.
C.
.
D. − .
3
3
e
3
!
3n + 2
Câu 100. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a2 − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 4.
B. 2.
C. 5.
D. 3.
Câu 101. [1] Đạo hàm của hàm số y = 2 x là

1
1
.
C. y0 = x
.
A. y0 = 2 x . ln x.
B. y0 =
ln 2
2 . ln x
Câu 102. √
Tính mơ đun của số phức√z biết (1 + 2i)z2 = 3 + 4i.
4
A. |z| = 5.
B. |z| = 5.
C. |z| = 5.

D. y0 = 2 x . ln 2.

D. |z| = 2 5.

2

Câu 103. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 2 − log2 3.
B. 3 − log2 3.
C. 1 − log3 2.

D. 1 − log2 3.

Câu 104. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.

A. −2 ≤ m ≤ 2.
B. m ≥ 3.
C. −3 ≤ m ≤ 3.
D. m ≤ 3.
Câu 105. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 2.
B. 4.
C. −2.

D. −4.

Câu 106. Khối đa diện đều loại {3; 4} có số cạnh
A. 10.
B. 12.

D. 6.

C. 8.

Câu 107. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
A. .
B. 2.
C. −2.
D. − .
2
2
Câu 108. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?

A. 8.
B. 6.
C. 3.
D. 4.
Câu 109.
√ [4-1245d] Trong tất cả
√ các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
A. 2.
B. 10.
C. 1.
D. 2.
Trang 8/10 Mã đề 1


Câu 110. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có hai.
B. Khơng có.
C. Có một.
D. Có một hoặc hai.
log7 16
bằng
Câu 111. [1-c] Giá trị của biểu thức
15
log7 15 − log7 30
A. −2.
B. −4.
C. 4.
D. 2.
Câu 112. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?

A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 113. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; 3).
B. A0 (−3; 3; 1).
C. A0 (−3; −3; −3).
D. A0 (−3; 3; 3).
x+2
đồng biến trên khoảng
Câu 114. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x + 5m
(−∞; −10)?
A. Vô số.
B. 1.
C. 3.
D. 2.
Câu 115. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Khơng thay đổi.
B. Giảm đi n lần.
C. Tăng lên (n − 1) lần. D. Tăng lên n lần.
Câu 116. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 8 mặt.
C. 10 mặt.

D. 6 mặt.


Câu 117. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 14 năm.
B. 12 năm.
C. 11 năm.
D. 10 năm.
1
Câu 118. Hàm số y = x + có giá trị cực đại là
x
A. 1.
B. −1.
C. −2.
D. 2.
log 2x
Câu 119. [3-1229d] Đạo hàm của hàm số y =

x2
1 − 2 log 2x
1
1 − 2 ln 2x
1 − 4 ln 2x
.
C. y0 = 3
.
D. y0 =
.
A. y0 =

.
B. y0 = 3
3
x
2x ln 10
x ln 10
2x3 ln 10
ln x p 2
1
Câu 120. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
8
1
1
8
A. .
B. .
C. .
D. .
3
9
3
9
Câu 121. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục ảo.
B. Đường phân giác góc phần tư thứ nhất.
C. Trục thực.
D. Hai đường phân giác y = x và y = −x của các góc tọa độ.

1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
A. xy0 = −ey + 1.
B. xy0 = ey − 1.
C. xy0 = −ey − 1.
D. xy0 = ey + 1.
!x
1
Câu 123. [2] Tổng các nghiệm của phương trình 31−x = 2 +

9
A. 1 − log2 3.
B. log2 3.
C. − log3 2.
D. − log2 3.
Câu 122. [3-12217d] Cho hàm số y = ln

Trang 9/10 Mã đề 1


1
1
1
Câu 124. Tính lim
+
+ ··· +
1.2 2.3

n(n + 1)

!

3
.
2
Câu 125. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm
0
A đến đường
√ thẳng BD bằng



c a2 + b2
a b2 + c2
b a2 + c2
abc b2 + c2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2

A. 0.

B. 1.

C. 2.

Câu 126. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. 5.
B. −6.
C. −5.

D.

2

D. 6.

x−1 y z+1
= =

2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x − y + 2z − 1 = 0.
B. 2x + y − z = 0.
C. −x + 6y + 4z + 5 = 0.
D. 10x − 7y + 13z + 3 = 0.


Câu 127. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình

Câu 128. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Ba mặt.
B. Hai mặt.
C. Bốn mặt.

D. Một mặt.

Câu 129. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
1
ab
ab
.
C. √
A. √
.
B. 2
.
D. √
.
2
a +b
a2 + b2
2 a2 + b2
a2 + b2
Câu 130. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Thập nhị diện đều. B. Tứ diện đều.

C. Bát diện đều.
D. Nhị thập diện đều.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
2.

C

3.

C

4.

C

5.

C

6.
8.

D


9.

B

10.

D

12.
14.

15. A
C

21.
D

B

C

25. A
C

C

27.

B


29.

B

31. A
B

33.

34. A
36.

B

23.

30. A
32.

C

19.

B

22.

28.


17. A
D

26.

D

13. A

B

18.

24.

B

11.

C

16.
20.

7. A

C

35. A
37.


B
C

38.

39.

40. A

D
B

41.

C

42.

C

43.

D

44.

C

45.


D

46. A

47. A

48.

C

49.

50. A

51. A

52. A

53.

54.

D

55.

56.

D


57. A

B
D

61. A

B

62.
64.

D

59.

58. A
60.

B

C
B

63.

B

65.


B

66. A

67. A

68. A

69. A
1


70. A

71.

72.

C

73.

74.

C

75.

79.


D

80.

C

86. A

87. A

88.

89. A

90.
C

91.

B
D

94.
D

95.

B
C


92. A

93. A
B

99. A

B

96.

D

98.

D

100. A
D

101.

102.

103. A

B

104.


105.

C

106.

107.

C

108.

109.

C

110.

B

112.

113.
115.

D

84. A


85. A

111.

C

82.

B

83.

97.

D

78.

77. A
81.

C

D
B

C
B
C
D

B

114.

D

116.

D

117.

C

118.

119.

C

120.

C
D

121.

D

122.


B

123.

D

124.

B

125.

B

126.

C
C

127.

D

128.

129.

D


130. A

2



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×