Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg 5 (471)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (154.9 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

d = 30◦ , biết S BC là tam giác đều
Câu 1. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vuông √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
16
9
26
13


Câu 2. Tính diện tích hình phẳng giới hạn bởi các đường√y = xe x , y = 0, x = 1.
3
1
3
B. 1.
C.
.
D. .
A. .
2
2
2
2
4
3
Câu 3. Cho z là nghiệm của phương trình √x + x + 1 = 0. Tính P = z + 2z − z

−1 + i 3
−1 − i 3
A. P = 2i.
B. P =
.
C. P = 2.
D. P =
.
2
2
Câu 4. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. .

B. 2e + 1.
C. 3.
D. 2e.
e
Câu 5. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (III) sai.

B. Câu (I) sai.

C. Câu (II) sai.

D. Khơng có câu nào
sai.
Câu 6. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Tăng lên n lần.
B. Tăng lên (n − 1) lần. C. Giảm đi n lần.
D. Không thay đổi.
Câu 7. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 3.
B. 0, 4.
C. 0, 5.
D. 0, 2.
1 − 2n
Câu 8. [1] Tính lim

bằng?
3n + 1
1
2
2
A. .
B. 1.
C. .
D. − .
3
3
3
!4x
!2−x
2
3
Câu 9. Tập các số x thỏa mãn


3
2
"
!
#
#
"
!
2
2
2

2
; +∞ .
B. −∞; .
C. −∞; .
D. − ; +∞ .
A.
5
5
3
3
Câu 10. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [−1; 2).
B. (−∞; +∞).
C. (1; 2).

D. [1; 2].

d = 120◦ .
Câu 11. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 2a.
B. 3a.
C.
.
D. 4a.
2
Trang 1/10 Mã đề 1



Câu 12. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B

√ C là
3
a3 3
a3
a 3
.
B.
.
C. a3 .
D.
.
A.
6
2
3
Câu 13. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vô nghiệm.
B. 2.
C. 3.
D. 1.
1
bằng
Câu 14. [1] Giá trị của biểu thức log √3
10
1
1

A. 3.
B. − .
C. −3.
D. .
3
3
Câu 15. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 3.

B. 4.

C. 1.

Câu 16. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 2ac
3b + 3ac
.
B.
.
C.
.
A.
c+2
c+1
c+2

Câu 17. Dãy số nào sau đây có giới hạn là 0?
n2 − 3n
n2 + n + 1
1 − 2n
A. un =
.
B.
u
=
.
C. un =
.
n
2
2
n
(n + 1)
5n + n2

D. 2.
D.

3b + 2ac
.
c+3

D. un =

n2 − 2
.

5n − 3n2

Câu 18. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
z
x+1 y−5
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
d:
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 2; −1).
B. ~u = (2; 1; 6).
C. ~u = (3; 4; −4).
D. ~u = (1; 0; 2).
Câu 19. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 7.
B. 2.
C. 1.
D. 3.
Câu 20. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P.
B. d song song với (P).
C. d ⊥ P.
D. d nằm trên P hoặc d ⊥ P.
Z 1
Câu 21. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b

0

1
.
4

Câu 22. [1] Biết log6 a = 2 thì log6 a bằng
A. 36.
B. 4.
A. 1.

B.

1
.
2

C. 0.

D.

C. 6.

D. 108.

Câu 23. [2-c] Giá trị nhỏ nhất của hàm số y = (x − 2)e trên đoạn [−1; 2] là
A. 2e2 .
B. −2e2 .
C. −e2 .
D. 2e4 .

x−2 x−1
x
x+1
Câu 24. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−3; +∞).
B. (−∞; −3].
C. (−∞; −3).
D. [−3; +∞).
2

2x

Trang 2/10 Mã đề 1


1
Câu 25. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 luôn đồng biến trên
3

một đoạn có độ dài bằng 24.
A. m = −3, m = 4.

B. m = −3.
C. −3 ≤ m ≤ 4.
D. m = 4.
Câu 26. Phát biểu nào sau đây là sai?
1
A. lim = 0.
n
1
C. lim k = 0.
n

B. lim un = c (un = c là hằng số).
D. lim qn = 0 (|q| > 1).

Câu 27. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. .
B. .
C. .
D. 4.
2
4
8
Câu 28. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vô nghiệm.
B. 2.
C. 3.
D. 1.

!
!
!
1
2
2016
4x
Câu 29. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T = 2016.
B. T = 2017.
C. T = 1008.
D. T =
.
2017
Câu 30. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; 2).
B. Hàm số đồng biến trên khoảng (0; +∞).
C. Hàm số nghịch biến trên khoảng (−∞; 2).
D. Hàm số nghịch biến trên khoảng (0; 2).
Câu 31. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 27.
B. 3.

C. 10.

D. 12.

Câu 32. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 8 mặt.
C. 10 mặt.

D. 4 mặt.

1

= m − 2 có nghiệm
3|x−2|
A. 2 < m ≤ 3.
B. 0 < m ≤ 1.
C. 0 ≤ m ≤ 1.
D. 2 ≤ m ≤ 3.
x−1 y z+1
Câu 34. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
= =

2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x − y + 2z − 1 = 0.
B. 10x − 7y + 13z + 3 = 0.

C. −x + 6y + 4z + 5 = 0.
D. 2x + y − z = 0.
Câu 33. [12214d] Với giá trị nào của m thì phương trình

Câu 35. Khối đa diện đều loại {5; 3} có số cạnh
A. 30.
B. 20.

C. 8.

Câu 36. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 0, 8.
B. −7, 2.
C. 7, 2.

D. 12.
D. 72.

Câu 37. Cho hàm số y = x3 − 2x2 + x + 1. !Mệnh đề nào dưới đây đúng?
!
1
1
A. Hàm số nghịch biến trên khoảng ; 1 .
B. Hàm số đồng biến trên khoảng ; 1 .
3
3
C. Hàm số nghịch biến trên khoảng (1; +∞).

!
1

D. Hàm số nghịch biến trên khoảng −∞; .
3

Câu 38. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 − sin 2x.
B. 1 + 2 sin 2x.
C. −1 + 2 sin 2x.

D. −1 + sin x cos x.
Trang 3/10 Mã đề 1


Câu 39. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng số cạnh của khối chóp.
B. Số mặt của khối chóp bằng 2n+1.
C. Số đỉnh của khối chóp bằng 2n + 1.
D. Số cạnh của khối chóp bằng 2n.
Câu 40. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Bốn mặt.
B. Một mặt.
C. Ba mặt.

D. Hai mặt.

3
2
Câu 41. Giá
√ trị cực đại của hàm số y =
√ x − 3x − 3x + 2


A. 3 − 4 2.
B. −3 + 4 2.
C. −3 − 4 2.


D. 3 + 4 2.

Câu 42. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m , 0.
B. m = 0.
C. m < 0.
x2 − 12x + 35
Câu 43. Tính lim
x→5
25 − 5x
2
2
C. .
A. +∞.
B. − .
5
5
Câu 44. Khối đa diện đều loại {5; 3} có số đỉnh
A. 20.
B. 8.
C. 12.

D. m > 0.

D. −∞.

D. 30.

Câu 45. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (0; −2).
B. (−1; −7).
C. (1; −3).

D. (2; 2).

Câu 46. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
2

A. 2.

B. 6.

C. 4.

Câu 47. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 4 mặt.
C. 6 mặt.

3

Z

6
3x + 1


. Tính

1

f (x)dx.
0

D. −1.
D. 5 mặt.

Câu 48. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; −1) và (0; +∞). B. (0; 1).
C. (−1; 0).
D. (−∞; 0) và (1; +∞).
Câu 49. Hàm số y =
A. x = 3.

x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 0.

C. x = 1.

D. x = 2.

Câu 50. Khối đa diện đều loại {4; 3} có số mặt
A. 8.
B. 10.


C. 12.

D. 6.

Câu 51. Tứ diện đều thuộc loại
A. {5; 3}.
B. {3; 3}.

C. {4; 3}.

D. {3; 4}.

Câu 52. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vuông cạnh a. Hai mặt phẳng (S AB) và (S AD)

cùng vng
√ góc với đáy, S C = a 3. Thể tích khối chóp S 3.ABCD

3
a 3
a 3
a3
3
A.
.
B. a .
C.
.
D.
.

3
9
3
Câu 53. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; 3; 3).
B. A0 (−3; −3; 3).
C. A0 (−3; 3; 1).
D. A0 (−3; −3; −3).
x+2
Câu 54. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 3.
B. 1.
C. 2.
D. Vô số.
Trang 4/10 Mã đề 1


Câu 55. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 160 cm2 .
C. 1200 cm2 .
D. 120 cm2 .
Câu 56. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng


a 3
a
a
A. .
B. a.
C.
.
D. .
2
2
3
Câu 57. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 48cm3 .
C. 91cm3 .
D. 84cm3 .
Câu 58. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối bát diện đều.
B. Khối lập phương.
C. Khối tứ diện.
D. Khối lăng trụ tam giác.
Câu 59. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối chóp S .ABCD là



a3 6
a3 15
a3 5

3
A.
.
B. a 6.
C.
.
D.
.
3
3
3
2n − 3
bằng
Câu 60. Tính lim 2
2n + 3n + 1
A. +∞.
B. 0.
C. 1.
D. −∞.
Câu 61. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp đôi.
B. Tăng gấp 6 lần.
C. Tăng gấp 4 lần.
D. Tăng gấp 8 lần.
Câu 62. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 1.

B. 3.


1
3|x−1|

C. 4.

= 3m − 2 có nghiệm duy

D. 2.

log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m ≤ 0.
D. m < 0.

Câu 63. [3-1226d] Tìm tham số thực m để phương trình
A. m < 0 ∨ m > 4.

B. m < 0 ∨ m = 4.

Câu 64. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≥ 3.
B. −3 ≤ m ≤ 3.
C. m ≤ 3.
D. −2 ≤ m ≤ 2.
Câu 65. Xét hai câu sau
Z
Z
Z

(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên đúng. B. Cả hai câu trên sai.
1
Câu 66. Hàm số y = x + có giá trị cực đại là
x
A. −1.
B. −2.
Câu 67. [2] Phương trình log4 (x + 1)2 + 2 = log √2
A. 1 nghiệm.
B. Vơ nghiệm.

C. Chỉ có (I) đúng.

D. Chỉ có (II) đúng.

C. 1.
D. 2.

4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
C. 3 nghiệm.
D. 2 nghiệm.
Trang 5/10 Mã đề 1



Câu 68. Tìm
√ giá trị lớn nhất của√hàm số y =
A. 2 + 3.
B. 3 2.




x + 3 + 6√− x
C. 2 3.

D. 3.

Câu 69. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (II) đúng.
B. Cả hai đều đúng.

C. Cả hai đều sai.

D. Chỉ có (I) đúng.
x+3
Câu 70. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 1.
B. 2.

C. Vô số.
D. 3.
Câu 71. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 6
a3 3
a3 6
a 6
.
B.
.
C.
.
D.
.
A.
24
8
24
48
Câu 72. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. R.
B. (−∞; 1).
C. (0; 2).
D. (2; +∞).

Câu 73. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của

√ hình chóp S .ABCD với

√mặt phẳng (AIC) có diện tích
a2 5
a2 7
11a2
a2 2
.
B.
.
C.
.
D.
.
A.
4
16
8
32
Câu 74. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. Không tồn tại.
B. 0.
C. 9.
D. 13.
[ = 60◦ , S O

Câu 75. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S
√ BC) bằng

2a 57
a 57
a 57
A.
.
B.
.
C.
.
D. a 57.
19
17
19
 π π
3
Câu 76. Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 3.
B. 7.
C. 1.
D. −1.
x−3 x−2 x−1
x
Câu 77. [4-1213d] Cho hai hàm số y =

+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (2; +∞).
B. (−∞; 2].
C. (−∞; 2).
D. [2; +∞).
Câu 78. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 6510 m.
B. 1202 m.
C. 1134 m.
D. 2400 m.
3

Câu 79. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e3 .
B. e.
C. e2 .

D. e5 .

Câu 80. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 4 mặt. B. 4 đỉnh, 6 cạnh, 4 mặt. C. 3 đỉnh, 3 cạnh, 3 mặt. D. 4 đỉnh, 8 cạnh, 4 mặt.



Câu 81. [12215d] Tìm m để phương trình 4 x+
9
3
A. 0 ≤ m ≤ .
B. 0 < m ≤ .
4
4

1−x2



− 3m + 4 = 0 có nghiệm
3
C. 0 ≤ m ≤ .
D. m ≥ 0.
4

− 4.2 x+

1−x2

Trang 6/10 Mã đề 1






x = 1 + 3t




Câu 82. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua




z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là











x
=
−1
+

2t
x
=
−1
+
2t
x
=
1
+
3t
x = 1 + 7t
















A. 
D. 

.
y = −10 + 11t . B. 
y = −10 + 11t . C. 
y = 1 + 4t .
y=1+t
















z = 6 − 5t
z = −6 − 5t
z = 1 − 5t
z = 1 + 5t
Câu 83. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
S .ABCD là
của AD, biết S H ⊥ (ABCD), S A =√a 5. Thể tích khối chóp √
4a3

4a3 3
2a3 3
2a3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
log 2x

Câu 84. [1229d] Đạo hàm của hàm số y =
x2
1
1 − 2 ln 2x
1 − 2 log 2x
1 − 4 ln 2x
0
A. y0 = 3
.
B. y0 = 3
.
C. y0 =
.

D.
y
=
.
2x ln 10
x ln 10
x3
2x3 ln 10
Câu 85. Giá trị của lim (3x2 − 2x + 1)
A. +∞.

x→1

B. 3.

C. 2.

D. 1.

Câu 86. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.


√ tích khối chóp S .ABC3 √
3
a 6
a3 6
a3 6
a 2

.
B.
.
C.
.
D.
.
A.
6
36
18
6
Câu 87. Cho hình chóp S .ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là√
3
3
a
2a 3
4a3 3
a3
A.
.
B.
.
C.
.
D.
.
6

3
3
3
Câu 88. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp tứ giác.
B. Một khối chóp tam giác, một khối chóp ngữ giác.
C. Hai khối chóp tam giác.
D. Hai khối chóp tứ giác.
1 − n2
bằng?
Câu 89. [1] Tính lim 2
2n + 1
1
A. .
B. 0.
3

1
C. − .
2

D.

1
.
2

Câu 90. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.

A. 21.
B. 22.
C. 24.
D. 23.
Câu 91. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (1; +∞).
B. Hàm số đồng biến trên khoảng (1; 2).
C. Hàm số nghịch biến trên khoảng (0; 1).
D. Hàm số nghịch biến trên khoảng (−∞; 0).
Câu 92. [4-1246d] Trong tất cả√các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn nhất
√ của |z|
A. 2.
B. 3.
C. 1.
D. 5.
Trang 7/10 Mã đề 1


[ = 60◦ , S O
Câu 93. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S√BC) bằng


a 57
2a 57
a 57
A. a 57.
B.
.

C.
.
D.
.
19
19
17
Câu 94. [2] Tìm m để giá trị nhỏ nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 2√
C. m = ±3.
D. m = ± 3.
A. m = ±1.
B. m = ± 2.
Câu 95. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 2.
B. 6.
C. −1.
Câu 96.
bằng 1 là:
√ Thể tích của khối lăng trụ tam giác đều có cạnh √
3
3
3
A.
.
B. .
C.
.
4
4
12

x+1
Câu 97. Tính lim
bằng
x→+∞ 4x + 3
1
1
A. .
B. .
C. 3.
3
4
Câu 98. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −4.
B. 4.
C. 2.

D. 1.

3
D.
.
2

D. 1.

D. −2.

Câu 99. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α


A. aα+β = aα .aβ .
B. β = a β .
C. aα bα = (ab)α .
D. aαβ = (aα )β .
a
Câu 100. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm
0
A đến đường



√ thẳng BD bằng
c a2 + b2
b a2 + c2
abc b2 + c2
a b2 + c2
.
B. √
.
C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 101. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba cạnh.

B. Hai cạnh.
C. Năm cạnh.

D. Bốn cạnh.

Câu 102. [1] Hàm số nào đồng
√ biến trên khoảng (0; +∞)?
A. y = loga x trong đó a = 3 − 2.
B. y = log 14 x.
C. y = log π4 x.
D. y = log √2 x.

Câu 103. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã

√ cho là


3
πa 3
πa3 3
πa3 6
πa3 3
.
B. V =
.
C. V =
.
D. V =
.

A. V =
2
3
6
6
Câu 104. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x+1 y−4 z−4
x−2 y−3 z+4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x y z−1
x y−2 z−3
A. = =
.
B. =
=
.
1 1
1
2

3
−1
x−2 y+2 z−3
x−2 y−2 z−3
C.
=
=
.
D.
=
=
.
2
2
2
2
3
4
Câu 105. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {4; 3}.
B. {5; 3}.
C. {3; 3}.
D. {3; 4}.
!
5 − 12x
Câu 106. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. Vô nghiệm.
B. 2.

C. 3.
D. 1.
Trang 8/10 Mã đề 1


Câu 107. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
ab
1
ab
.
B. √
.
C. √
.
D. √
.
A. 2
2
a +b
2 a2 + b2
a2 + b2
a2 + b2
1

Câu 108. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R \ {1}.
B. D = (1; +∞).
C. D = (−∞; 1).

D. D = R.
Z 2
ln(x + 1)
Câu 109. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. 0.
B. 1.
C. 3.
D. −3.
Câu 110. [1] Tập
! xác định của hàm số! y = log3 (2x + 1) là
!
1
1
1
B.
; +∞ .
C. − ; +∞ .
A. −∞; − .
2
2
2

!
1
D. −∞; .
2


Câu 111. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 6.
B. V = 5.
C. V = 3.
D. V = 4.
Câu 112. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; 2).
B. (−∞; 0) và (2; +∞). C. (−∞; 2).

D. (0; +∞).

−2x2

Câu 113. [2-c] Giá trị lớn nhất của hàm số y = xe
1
1
A. √ .
B.
.
2e3
2 e
Câu 114. [1-c] Giá trị của biểu thức
A. −4.

log7 16
log7 15 − log7

B. 2.


trên đoạn [1; 2] là
2
C. 3 .
e

15
30

D.

1
.
e2

bằng

C. 4.

D. −2.

1
Câu 115. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 ≤ m ≤ −1.
B. (−∞; −2] ∪ [−1; +∞). C. −2 < m < −1.
D. (−∞; −2) ∪ (−1; +∞).
Câu 116. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R.
B. D = R \ {1}.


C. D = (0; +∞).

Câu 117. [1] Đạo hàm của làm số y = log x là
1
ln 10
A. y0 = .
B. y0 =
.
x
x

D. D = R \ {0}.

1
1
.
D. y0 =
.
10 ln x
x ln 10

Câu 118. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. 62.
C. 63.
D. Vô số.
C.


Câu 119. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hồn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 25 triệu đồng.
B. 3, 03 triệu đồng.
C. 2, 22 triệu đồng.
D. 2, 20 triệu đồng.
2

Câu 120. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 5.
B. 4.
C. 2.

D. 3.

Câu 121. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối tứ diện đều.

D. Khối bát diện đều.

C. Khối 12 mặt đều.

Trang 9/10 Mã đề 1


1

Câu 122. [2] Tổng các nghiệm của phương trình 3 = 2 +
9
A. 1 − log2 3.
B. − log2 3.
C. log2 3.

!x

1−x

Câu 123. Khối đa diện đều loại {4; 3} có số đỉnh
A. 6.
B. 8.
Câu 124. Nếu một hình chóp đều có chiều
lên?
A. 2n2 lần.
B. n3 lần.
!2x−1
3
Câu 125. Tập các số x thỏa mãn

5
A. (+∞; −∞).
B. [1; +∞).
dx = x + C, C là hằng số.

Z
C.

D. 10.


cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng

3
5

C. n3 lần.

D. 2n3 lần.

C. [3; +∞).

D. (−∞; 1].

!2−x


B.

1
dx = ln |x| + C, C là hằng số.
x

D. − log3 2.

C. 4.

Câu 126.
Trong các khẳng định sau, khẳng định nào sai?Z
Z

A.



Z
D.

xα dx =

xα+1
+ C, C là hằng số.
α+1

0dx = C, C là hằng số.

Câu 127. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 − 2e
1 + 2e
1 + 2e
A. m =
.
B. m =
.
C. m =
.
D. m =
.
4e + 2
4 − 2e

4 − 2e
4e + 2
Câu 128. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 12 năm.
B. 14 năm.
C. 11 năm.
D. 10 năm.


4n2 + 1 − n + 2
bằng
Câu 129. Tính lim
2n − 3
3
A. 1.
B. 2.
C. +∞.
D. .
2
Câu 130. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
B. 5.

C.
.
D. 68.
A. 34.
17
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
D

1.
3.

2.

C

5.

D
D

9.
11.


C
B

15. A
C
B

21.

D

23.

C

25. A
27.

B
C

29.
31.

C

6.

C
D


10.

B

12.

B

14.

B

16. A

17.
19.

4.
8.

7. A

13.

B

18.

D


20.

D

22.

B

24.

B

26.

D

28.

D

30. A

B

32. A

33. A

34.


B

35. A

36.

B

37. A

38.

39.
41.

D

40. A
42. A

B

43.

C

44. A

45. A

47.

B

49.
51.

C
B

46.

C

48.

C

50.

D

52.

D

53. A

54.


55. A

56.

57. A

58.

59. A

60.

61.
63.

D

C
B
C
B

62. A

B

65. A
67.

C


D
1

64.

B

66.

B

68.

B


69. A

70.

71. A

72.
C

73.

74.


75. A

D
C
B

76.

77.

D

78. A

79.

D

80.

81.

C
B

82. A

C

83. A


84.

85.

C

86.

87.

C

88. A

89.

C

90.

91.

C

92. A

93.

B


94. A

95.

B

96. A

97.

B

98.

99.

B

B
C
B

D

100. A
102.

101. A
103.


B

104. A

105.

B

106.
C

107.

108.

109.

D

110.

111.

D

112.

113.


D

114. A

115. A

D
D
B
C
B

116. A

117.

D

119.

C

118.

B

120.

B


121.

B

122.

B

123.

B

124.

B

125.

B

126.

B

127. A

128.

C


129. A

130.

C

2



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×