Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg 7 (161)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (154.31 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Khối đa diện đều loại {3; 5} có số đỉnh
A. 20.
B. 8.

C. 12.

D. 30.

d = 30◦ , biết S BC là tam giác đều
Câu 2. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.


C.
.
D.
.
13
9
26
16
3
2
Câu 3. [2] Tìm m để giá trị lớn nhất của
+ 1)2 x trên [0; 1] bằng 8
√ hàm số y = 2x + (m √
A. m = ±1.
B. m = ± 2.
C. m = ± 3.
D. m = ±3.

Câu 4. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Hai đường phân giác y = x và y = −x của các góc tọa độ.
B. Trục ảo.
C. Đường phân giác góc phần tư thứ nhất.
D. Trục thực.
Câu 5. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 1.
B. 4 − 2 ln 2.
C. e.

D. −2 + 2 ln 2.


Câu 6. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 2.
B. 4.
C. −4.

D. −2.

Câu 7. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (1; +∞).
C. (−∞; −1).


4n2 + 1 − n + 2
Câu 8. Tính lim
bằng
2n − 3
3
C. 1.
A. +∞.
B. .
2
Câu 9. Khối đa diện đều loại {3; 3} có số mặt
A. 2.
B. 4.
C. 3.

D. (−1; 1).

D. 2.

D. 5.

Câu 10. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 5.
B. 0, 2.
C. 0, 4.
D. 0, 3.
Câu 11. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 20, 128 triệu đồng. B. 3, 5 triệu đồng.
C. 70, 128 triệu đồng. D. 50, 7 triệu đồng.
Câu 12. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có hai.
B. Có một.
C. Khơng có.
D. Có một hoặc hai.
Câu 13. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.

B. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
C. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
D. Cả ba đáp án trên.
Trang 1/10 Mã đề 1


3


Câu 14. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e3 .
B. e5 .
C. e2 .

D. e.

x2

Câu 15. [2] Tổng các nghiệm của phương trình 3 x−1 .2 = 8.4 x−2 là
A. 1 − log3 2.
B. 1 − log2 3.
C. 3 − log2 3.

D. 2 − log2 3.

Câu 16. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ Thể tích khối chóp S 3.ABC
√ là


3
a 3
a3 3
a3 3
a 2
.
B.
.

C.
.
D.
.
A.
12
6
12
4
tan x + m
Câu 17. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. (1; +∞).
B. [0; +∞).
C. (−∞; 0] ∪ (1; +∞). D. (−∞; −1) ∪ (1; +∞).
Câu 18. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 3.
B. 1.
C. Vơ nghiệm.
D. 2.
Câu 19. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√ là

3

3
3
3
8a 3
4a 3
a 3
8a 3
.
B.
.
C.
.
D.
.
A.
3
9
9
9
Câu 20. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm cạnh.
B. Ba cạnh.
C. Hai cạnh.
D. Bốn cạnh.
x−2 x−1
x
x+1
Câu 21. [4-1212d] Cho hai hàm số y =
+
+

+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−3; +∞).
B. (−∞; −3).
C. [−3; +∞).
D. (−∞; −3].
Câu 22. Dãy số nào sau đây có giới hạn là 0?
n2 + n + 1
1 − 2n
A. un =
.
B. un =
.
2
(n + 1)
5n + n2

C. un =

n2 − 2
.
5n − 3n2

Câu 23. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?

A. 1.

B. 2.

C. 4.

D. un =
1
3|x−1|

n2 − 3n
.
n2

= 3m − 2 có nghiệm duy

D. 3.

Câu 24. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
B. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
Câu 25. Dãy số
!n nào có giới hạn bằng 0?
−2
.
B. un = n2 − 4n.
A. un =
3


!n
6
C. un =
.
5

Câu 26. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 6 mặt.
C. 4 mặt.
2x + 1
Câu 27. Tính giới hạn lim
x→+∞ x + 1
1
A. −1.
B. 1.
C. .
2

n3 − 3n
D. un =
.
n+1
D. 5 mặt.

D. 2.
Trang 2/10 Mã đề 1



Câu 28. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 24.
B. 15, 36.
C. 3, 55.
D. 20.
cos n + sin n
Câu 29. Tính lim
n2 + 1
A. +∞.
B. −∞.
C. 0.
D. 1.
√3
4
Câu 30. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
5
2
7
5
A. a 8 .
B. a 3 .
C. a 3 .
D. a 3 .
Câu 31. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lập phương.
B. Khối lăng trụ tam giác.
C. Khối tứ diện.
D. Khối bát diện đều.

Câu 32. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối


√ chóp S .ABCD là
a3 3
a3 2
a3 6
a3 3
.
B.
.
C.
.
D.
.
A.
24
48
16
48
Câu 33. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 12.
B. 18.
C. 27.
D.
.
2

Câu 34. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. −6.
B. 6.
C. −5.
D. 5.



x = 1 + 3t




Câu 35. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua




z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là












x
=
1
+
7t
x
=
−1
+
2t
x
=
1
+
3t
x = −1 + 2t

















A. 
.
B. 
D. 
y=1+t
y = −10 + 11t . C. 
y = 1 + 4t .
y = −10 + 11t .

















z = 1 + 5t
z = 6 − 5t
z = 1 − 5t
z = −6 − 5t
!
1
1
1
+ ··· +
Câu 36. [3-1131d] Tính lim +
1 1+2
1 + 2 + ··· + n
3
5
A. .
B. 2.
C. .
D. +∞.
2
2
1
Câu 37. Hàm số y = x + có giá trị cực đại là
x
A. 1.
B. −1.
C. 2.
D. −2.
2

Câu 38. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là

A. 27.
B. 10.
C. 3.

D. 12.

Câu 39. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. f (x) có giới hạn hữu hạn khi x → a.
B. lim+ f (x) = lim− f (x) = a.
C. lim+ f (x) = lim− f (x) = +∞.
x→a

x→a

Câu 40. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối tứ diện đều.

x→a

x→a

D. lim f (x) = f (a).
x→a

C. Khối bát diện đều.

D. Khối 12 mặt đều.
Trang 3/10 Mã đề 1



Câu 41. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là 4.
B. Phần thực là 3, phần ảo là 4.
C. Phần thực là −3, phần ảo là −4.
D. Phần thực là 3, phần ảo là −4.
Câu 42. Trong khơng gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu
! của A lên BC là
!
8
5
7
A. (2; 0; 0).
B.
; 0; 0 .
C.
; 0; 0 .
D.
; 0; 0 .
3
3
3
Câu 43. Khối đa diện đều loại {3; 4} có số đỉnh
A. 10.
B. 4.

C. 8.

D. 6.


Câu 44. Tứ diện đều thuộc loại
A. {3; 4}.
B. {3; 3}.

C. {5; 3}.

D. {4; 3}.

Câu 45. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. (−∞; −3].
B. [1; +∞).
C. [−1; 3].
D. [−3; 1].
Câu 46. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. Không tồn tại.
B. −5.
C. −3.

D. −7.

Câu 47. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 12 mặt đều.

C. Khối 20 mặt đều.

D. Khối tứ diện đều.

Câu 48. Khối chóp ngũ giác có số cạnh là

A. 11 cạnh.
B. 10 cạnh.

C. 12 cạnh.

D. 9 cạnh.

Câu 49. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là −1.
B. Phần thực là 4, phần ảo là 1.
C. Phần thực là −1, phần ảo là −4.
D. Phần thực là −1, phần ảo là 4.
Câu 50. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −5.
B. −12.
C. −9.
D. −15.
 π
Câu 51. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


1 π3
2 π4
3 π6
A. e .
B.
e .
C. 1.

D.
e .
2
2
2
1 − 2n
Câu 52. [1] Tính lim
bằng?
3n + 1
2
1
2
A. − .
B. .
C. 1.
D. .
3
3
3
Câu 53. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của hình chóp S .ABCD với√mặt phẳng (AIC) có diện√tích là

2
a 2
11a2
a2 7
a2 5
A.

.
B.
.
C.
.
D.
.
4
32
8
16
! x3 −3mx2 +m
1
Câu 54. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m ∈ R.
B. m , 0.
C. m = 0.
D. m ∈ (0; +∞).
Câu 55. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
Trang 4/10 Mã đề 1


!
un
B. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.

!vn
un
= +∞.
C. Nếu lim un = a > 0 và lim vn = 0 thì lim
vn
!
un
D. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
[ = 60◦ , S A ⊥ (ABCD).
Câu 56. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh
√ S C là a. Thể tích khối
√chóp S .ABCD là

a3 2
a3 2
a3 3
A.
.
B.
.
C.
.
D. a3 3.
4
12
6
Câu 57. Cho

Z hai hàm yZ = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
0
B. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z
0
C. Nếu
f (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
D. Nếu
Câu 58. Mệnh đề nào sau đây sai?
Z
A. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
!0
Z
f (x)dx = f (x).
B.

f (x)dx = F(x) + C.


C. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
D. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Câu 59. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 2e + 1.
B. .
C. 2e.
e
Câu 60. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 72.
B. 0, 8.
C. 7, 2.

D. 3.

D. −7, 2.

Câu 61. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 32π.
B. V = 4π.
C. 8π.
D. 16π.
Câu 62. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vô nghiệm.
B. 1.
C. 2.
D. 3.
Câu 63. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng

nhau?
A. 8.
B. 4.
C. 3.
D. 6.
2
Câu 64. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3 + (m√
+ 1)2 x trên [0; 1] bằng 2√
A. m = ±3.
B. m = ±1.
C. m = ± 3.
D. m = ± 2.

Câu 65. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
5a
2a
a
8a
A.
.
B.
.
C. .
D.
.
9
9
9

9
Trang 5/10 Mã đề 1


mx − 4
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
B. 67.
C. 34.
D. 45.

Câu 66. Tìm m để hàm số y =
A. 26.

Câu 67. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng




20 3
14 3
A. 6 3.
B.
.
C. 8 3.
D.
.
3

3
Câu 68. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 11.
B. 4.
C. 10.
D. 12.
12 + 22 + · · · + n2
Câu 69. [3-1133d] Tính lim
n3
2
A. .
B. +∞.
3
2−n
Câu 70. Giá trị của giới hạn lim
bằng
n+1
A. 2.
B. 0.

C.

1
.
3

C. 1.

D. 0.


D. −1.

Câu 71. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 21.
B. P = −21.
C. P = 10.
D. P = −10.
Câu 72. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞

x→+∞

f (x) a
A. lim
= .
x→+∞ g(x)
b
C. lim [ f (x) − g(x)] = a − b.
x→+∞

Câu 73. Hàm số y =
A. x = 2.

x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 0.

B. lim [ f (x) + g(x)] = a + b.

x→+∞

D. lim [ f (x)g(x)] = ab.
x→+∞

C. x = 1.

D. x = 3.

Câu 74. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x y z−1
x y−2 z−3
A. = =
.
B. =
=

.
1 1
1
2
3
−1
x−2 y−2 z−3
x−2 y+2 z−3
C.
=
=
.
D.
=
=
.
2
3
4
2
2
2
Câu 75. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −3 ≤ m ≤ 3.
B. m ≤ 3.
C. m ≥ 3.
D. −2 ≤ m ≤ 2.
Z 3
x
a

a
Câu 76. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 28.
B. P = 16.
C. P = −2.
D. P = 4.
Câu 77. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; +∞).
B. (4; 6, 5].
C. [6, 5; +∞).

D. (−∞; 6, 5).

[ = 60◦ , S O
Câu 78. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a. Khoảng cách từ A đến (S√BC) bằng


a 57
2a 57
a 57
A.
.

B. a 57.
C.
.
D.
.
19
19
17
Trang 6/10 Mã đề 1


Câu 79. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 − 2e
1 + 2e
1 + 2e
.
B. m =
.
C. m =
.
D. m =
.
A. m =
4e + 2
4e + 2
4 − 2e
4 − 2e
Câu 80. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:

A. 64cm3 .
B. 48cm3 .
C. 84cm3 .
D. 91cm3 .
q
2
Câu 81. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 2].
B. m ∈ [0; 1].
C. m ∈ [−1; 0].
D. m ∈ [0; 4].
1
Câu 82. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (−∞; 1) và (3; +∞). B. (1; +∞).
C. (1; 3).
D. (−∞; 3).
2n + 1
Câu 83. Tính giới hạn lim
3n + 2
1
3
2
B. .
C. 0.
D. .
A. .

3
2
2
!
5 − 12x
Câu 84. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. 1.
B. Vô nghiệm.
C. 2.
D. 3.
Câu 85. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
.
C. −7.
D. −4.
A. −2.
B.
27
Câu 86. Khối lập phương thuộc loại
A. {5; 3}.
B. {3; 3}.
C. {4; 3}.
D. {3; 4}.
Câu 87. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. −1.
B. 2.
C. 1.


D. 6.

Câu 88. Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?
A. Nhị thập diện đều. B. Thập nhị diện đều. C. Bát diện đều.
D. Tứ diện đều.

Câu 89. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. 63.
C. Vơ số.
D. 62.
Câu 90. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 2020.
B. 13.
C. 2020.
D. log2 13.
Câu 91. Khối đa diện đều loại {3; 4} có số cạnh
A. 8.
B. 10.

x2 + 3x + 5
Câu 92. Tính giới hạn lim
x→−∞
4x − 1
A. 0.
B. 1.

C. 12.


C.

1
.
4

D. 6.

1
D. − .
4

log 2x
Câu 93. [3-1229d] Đạo hàm của hàm số y =

x2
1 − 2 log 2x
1 − 2 ln 2x
1
1 − 4 ln 2x
A. y0 =
.
B. y0 = 3
.
C. y0 = 3
.
D. y0 =
.
3
x

x ln 10
2x ln 10
2x3 ln 10
Câu 94. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
1
ab
1
A. √
.
B. √
.
C. 2
.
D.
.

a + b2
a2 + b2
a2 + b2
2 a2 + b2
Trang 7/10 Mã đề 1


Câu 95. [3] Biết rằng giá trị lớn nhất của hàm số y =
số tự nhiên. Tính S = m2 + 2n3
A. S = 32.
B. S = 22.


ln2 x
m
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e

C. S = 135.

D. S = 24.

Câu 96. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 27 lần.
B. Tăng gấp 3 lần.
C. Tăng gấp 18 lần.
D. Tăng gấp 9 lần.
Câu 97. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + sin x cos x.
B. 1 + 2 sin 2x.
C. −1 + 2 sin 2x.
x+1
bằng
Câu 98. Tính lim
x→−∞ 6x − 2
1
1
A. 1.
B. .
C. .
6

2
Câu 99.
Z Các khẳng định
Z nào sau đây là sai?
Z

D.

k f (x)dx = k

A.
Z
C.

D. 1 − sin 2x.

f (x)dx, k là hằng số.
B.
f (x)dx = F(x) + C ⇒
!0
Z
Z
f (x)dx = f (x).
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C. D.

1
.
3
Z


f (t)dt = F(t) + C.

Câu 100. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
A. − 2 .
C. −e.
D. − .
B. − .
e
2e
e
Câu 101. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun √
z.



5 13
C. 26.
D. 2.
A.
.
B. 2 13.
13
Câu 102. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa
√ hai đường thẳng S B và√AD bằng



a 2
a 2
.
B.
.
C. a 2.
A.
D. a 3.
2
3
3
2
Câu 103. Hàm số y = 2x + 3x + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (0; 1).
B. (−∞; 0) và (1; +∞). C. (−1; 0).
D. (−∞; −1) và (0; +∞).
Câu 104. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (I) sai.

B. Câu (II) sai.

C. Khơng có câu nào D. Câu (III) sai.
sai.


log2 240 log2 15

+ log2 1 bằng
log3,75 2 log60 2
A. −8.
B. 3.
C. 4.
D. 1.
a
1
Câu 106. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 1.
B. 4.
C. 7.
D. 2.

Câu 105. [1-c] Giá trị biểu thức

Câu 107. Khối đa diện đều loại {3; 3} có số cạnh
A. 8.
B. 5.

C. 4.

D. 6.
Trang 8/10 Mã đề 1



Câu 108. Tính lim
A. 3.

5
n+3

B. 1.

C. 0.

D. 2.

Câu 109. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −8.
B. x = −2.
C. x = −5.
Câu 110.
Trong các khẳng định sau, khẳng định nào sai?Z
Z
0dx = C, C là hằng số.

A.
Z
C.

1
dx = ln |x| + C, C là hằng số.
x

B.

Z
D.

D. x = 0.

dx = x + C, C là hằng số.
xα dx =

xα+1
+ C, C là hằng số.
α+1

1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
n2 + 1
A. Dãy số un khơng có giới hạn khi n → +∞.
B. lim un = 0.
1
C. lim un = 1.
D. lim un = .
2

Câu 111. [3-1132d] Cho dãy số (un ) với un =

Câu 112. Giá trị của lim(2x2 − 3x + 1) là
x→1

A. 0.

B. 2.


C. +∞.

D. 1.

Câu 113.
Cho hàm sốZf (x), g(x)Zliên tục trên R. Trong các
Z
Z mệnh đề sau, mệnhZđề nào sai? Z
A.
Z
C.

f (x)g(x)dx =
f (x)dx g(x)dx.
Z
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.

( f (x) − g(x))dx =

B.
Z
D.

( f (x) + g(x))dx =

f (x)dx −
Z


f (x)dx +

g(x)dx.
Z
g(x)dx.

Câu 114. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m > 3.
B. m ≤ 3.
C. m < 3.
D. m ≥ 3.
log(mx)
= 2 có nghiệm thực duy nhất
Câu 115. [1226d] Tìm tham số thực m để phương trình
log(x + 1)
A. m < 0.
B. m < 0 ∨ m > 4.
C. m < 0 ∨ m = 4.
D. m ≤ 0.
Câu 116. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 0.
B. 13.
C. Không tồn tại.

D. 9.

9x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9x + 3

1
D. 1.
A. 2.
B. −1.
C. .
2
Câu 118. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy
một góc 60◦ . Thể tích√khối chóp S .ABCD là √


2a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D. a3 3.
3
6
3
Câu 117. [2-c] Cho hàm số f (x) =

Câu 119. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B
C là



a3 3
a3 3
a3
A.
.
B.
.
C. a3 .
D.
.
6
2
3
1 − xy
Câu 120. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ
x + 2y
nhất Pmin của P√ = x + y.



9 11 + 19
2 11 − 3
9 11 − 19
18 11 − 29
A. Pmin =
. B. Pmin =
.

C. Pmin =
. D. Pmin =
.
9
3
9
21
Trang 9/10 Mã đề 1


2

Câu 121. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
1
1
B. 2 .
C. √ .
A. 3 .
2e
e
2 e
Câu 122. [1] Tập
! xác định của hàm số! y = log3 (2x + 1) là
!
1
1
1
A. −∞; − .
B. −∞; .

C.
; +∞ .
2
2
2
Câu 123. Phát biểu nào sau đây là sai?
A. lim qn = 1 với |q| > 1.
1
C. lim √ = 0.
n

D.

2
.
e3

!
1
D. − ; +∞ .
2

B. lim un = c (Với un = c là hằng số).
1
D. lim k = 0 với k > 1.
n

Câu 124. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).

(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (II).

B. Cả ba mệnh đề.

C. (I) và (III).

D. (II) và (III).

Câu 125. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
Thể tích khối chóp S .ABC√là
vng góc√với đáy và S C = a 3. √

3
3
2a 6
a 3
a3 3
a3 6
A.
.
B.
.
C.
.
D.
.

9
4
2
12
1
Câu 126. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = −e + 1.
B. xy = e − 1.
C. xy0 = ey + 1.
D. xy0 = −ey − 1.
Câu 127. Cho z √
là nghiệm của phương trình x2 + x + 1 = 0. Tính P √
= z4 + 2z3 − z
−1 + i 3
−1 − i 3
A. P =
.
B. P = 2.
C. P =
.
D. P = 2i.
2
2
Câu 128. [1] Cho a > 0, a , 1. Giá trị của biểu thức log a1 a2 bằng

1
1
A. − .
B. .
C. 2.
D. −2.
2
2
Câu 129. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
√ S .ABCD là
√ phẳng vng góc với (ABCD). Thể tích khối chóp
3
3
3

a 3
a 2
a 3
D.
A.
.
B.
.
C. a3 3.
.
2
4
2
Câu 130. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là

A. (−∞; +∞).
B. [1; 2].
C. (1; 2).
D. [−1; 2).
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
3.

B

4. A

7.

D
B
B
D

D

12.


D

B
D

21.

B

16.

17. A
19.

10.
14.

15.

C

8.

11. A
13.

D

6.


C

5.
9.

2. A

C

C

18.

B

20.

B

22.

B

23. A

24.

C

25. A


26.

C

27.

D

28.

B

29.

C

30.

B

31.

C

32.

B

33.


B

34.

35.

B

36.

37.

D

38.

39.

D

40. A

41. A

B

44.

45.


D

46. A

49. A
51.

B

48.

B

50.

B

52. A

53.

C

54.

55.

C


56. A

57.

D

58.

59.

D

60.

62.
64.
66.
68.

C
B

D
C

B

42.

43.

47.

C

C

63.

C
C
D
C

65.

B

D

67. A

C
D

69.
1

C



70.

D

71.

72. A

73.

74. A

75. A

76.

D

78.

C

B

79.

B

81.


82. A

83. A

84. A

85. A
C

88.

B

C

77.

80. A

86.

B

C

87.

D

89.


D

90.

D

91.

92.

D

93.

C
B

94. A

95. A

96. A

97.

C

99.


C

98.

B

100.

B

101. A

102. A

103.

104.

C

105. A

106.

C

107.

108.


C

109. A

110.

D

115.

C
D

117.

116. A
118.

C
B

122.

D

119.

B

121.


B

123. A
125.

124. A
128.

D

113. A

114.

126.

D

111.

D

112. A

120.

C

B


127.
D

129. A

130. A

2

D
B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×