Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg 8 (152)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (150.82 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai quyển
sách cùng một môn nằm cạnh nhau là
9
2
1
1
A.
.
B. .
C.
.
D. .
10
5
10
5
Câu 2. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng là hình lăng trụ đều.
B. Hình lăng trụ tứ giác đều là hình lập phương.
C. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
Câu 3. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).


Hai mặt bên
(S BC) và (S AD) cùng
hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD

√ là

3
3
3
3
a 3
8a 3
8a 3
4a 3
.
B.
.
C.
.
D.
.
A.
9
9
9
3
x−1
Câu 4. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2

tam giác đều ABI có hai đỉnh A, √
B thuộc (C), đoạn thẳng √
AB có độ dài bằng

A. 2.
B. 2 2.
C. 6.
D. 2 3.
Câu 5. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

1
A. .
B. 25.
C. 5.
5


Câu 6. Dãy số nào sau đây có giới hạn là 0?
n2 − 3n
n2 − 2
A. un =
.
B.
u
=
.
n
n2
5n − 3n2


C. un =

D. 5.

n2 + n + 1
.
(n + 1)2
2

D. un =

1 − 2n
.
5n + n2

2

sin x
Câu 7.
+ 2cos x lần√lượt là
√= 2
√ [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x)
B. 2 và 3.
C. 2 và 2 2.
D. 2 2 và 3.
A. 2 và 3.

Câu 8. Cho z là √
nghiệm của phương trình x2 + x + 1 = 0. Tính P = z4 + 2z3 − z


−1 − i 3
−1 + i 3
A. P =
.
B. P = 2i.
C. P = 2.
D. P =
.
2
2
Câu 9. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
Câu 10. Tính lim
x→5

2
A. − .
5

x2 − 12x + 35
25 − 5x
2
B. .
5

C. −∞.


Câu 11. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 0.
B. m > −1.
C. m > 1.

D. +∞.
D. m ≥ 0.

Câu 12. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
A. 6.
B. .
C. 9.
D. .
2
2
Trang 1/10 Mã đề 1


Câu 13. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
B. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
Câu 14. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, √biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là

a3

a3
2a3 3
4a3 3
.
B.
.
C.
.
D.
.
A.
3
6
3
3
1
Câu 15. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 4.
B. 2.
C. 3.
D. 1.
Câu 16. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối

√ chóp S .ABCD là
3
3
3


a
5
a 6
a 15
D.
A.
.
B.
.
C. a3 6.
.
3
3
3
!
x+1
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
Câu 17. [3] Cho hàm số f (x) = ln 2017 − ln
x
2017
2016
4035
A.
.
B. 2017.
C.
.
D.
.

2018
2017
2018
Câu 18. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất khơng đổi và người đó khơng rút tiền ra?
A. 13 năm.
B. 10 năm.
C. 12 năm.
D. 11 năm.
Câu 19. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 3, 5 triệu đồng.
B. 70, 128 triệu đồng. C. 20, 128 triệu đồng. D. 50, 7 triệu đồng.

Câu 20. [1] Biết log6 a = 2 thì log6 a bằng
A. 4.
B. 108.
C. 36.
D. 6.
Câu 21. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 3.
B. 1.
C. 2.
D. Vô số.
Câu 22. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.

B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 10 cạnh, 6 mặt.
Câu 23. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng BD và S C bằng




a 6
a 6
a 6
A. a 6.
B.
.
C.
.
D.
.
6
3
2
x−3
bằng?
Câu 24. [1] Tính lim
x→3 x + 3
A. +∞.
B. 0.
C. 1.
D. −∞.

Trang 2/10 Mã đề 1


 π
Câu 25. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


3 π6
2 π4
1 π
A.
e .
e .
B.
C. e 3 .
D. 1.
2
2
2
Câu 26. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; 0) và (1; +∞). B. (−1; 0).
C. (0; 1).
D. (−∞; −1) và (0; +∞).
[ = 60◦ , S O
Câu 27. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S BC) bằng



a 57
a 57
2a 57
A.
.
B.
.
C. a 57.
D.
.
19
17
19
!4x
!2−x
2
3
Câu 28. Tập các số x thỏa mãn


3 # 2
#
"
!
"
!
2
2
2

2
A. −∞; .
B. −∞; .
C. − ; +∞ .
D.
; +∞ .
3
5
3
5
3a
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

a 2
a
2a
a
B.
.
C. .
D.
.
A. .
3
3
4
3

Câu 30. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 387 m.
B. 27 m.
C. 1587 m.
D. 25 m.
Câu 29. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =

Câu 31. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. 2n2 lần.
B. n3 lần.
C. n3 lần.
D. 2n3 lần.
Câu 32. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [1; 2].
B. (−∞; +∞).
C. (1; 2).

D. [−1; 2).

Câu 33. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.


√ tích khối chóp S .ABC3 √

3
a 2
a3 6
a3 6
a 6
.
B.
.
C.
.
D.
.
A.
18
6
6
36
x−1 y z+1
Câu 34. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
= =

2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x − y + 2z − 1 = 0.
B. 2x + y − z = 0.
C. 10x − 7y + 13z + 3 = 0.
D. −x + 6y + 4z + 5 = 0.

Câu 35. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −12.
B. −15.
C. −5.
D. −9.
tan x + m
Câu 36. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. (−∞; 0] ∪ (1; +∞). B. (1; +∞).
C. [0; +∞).
D. (−∞; −1) ∪ (1; +∞).
Trang 3/10 Mã đề 1


!2x−1
!2−x
3
3
Câu 37. Tập các số x thỏa mãn


5
5
A. (−∞; 1].
B. (+∞; −∞).

C. [3; +∞).

D. [1; +∞).

Câu 38. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tam giác.
B. Một khối chóp tam giác, một khối chóp ngữ giác.
C. Hai khối chóp tứ giác.
D. Một khối chóp tam giác, một khối chóp tứ giác.
Câu 39. [1] Giá trị của biểu thức 9log3 12 bằng
A. 144.
B. 2.

C. 4.

D. 24.

Câu 40. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
3
9
B. 3.
C. 1.
D. .
A. .
2
2
Câu 41. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng góc với đáy, S C = a √3. Thể tích khối chóp S .ABCD là


a3
a3 3
a3 3
3
A.
.
B.
.
C. a .
D.
.
3
3
9
Câu 42. [3] Biết rằng giá trị lớn nhất của hàm số y =
số tự nhiên. Tính S = m2 + 2n3
A. S = 22.
B. S = 135.

m
ln2 x
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e

C. S = 24.

Câu 43. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.

B. 6 mặt.
C. 4 mặt.
4x + 1
bằng?
x→−∞ x + 1
B. 2.

D. S = 32.
D. 10 mặt.

Câu 44. [1] Tính lim
A. −4.

C. −1.

Câu 45. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. −7, 2.
B. 7, 2.
C. 72.

D. 4.
D. 0, 8.

1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
n2 + 1
1
A. lim un = 1.
B. lim un = .
2

C. Dãy số un khơng có giới hạn khi n → +∞.
D. lim un = 0.

Câu 46. [3-1132d] Cho dãy số (un ) với un =

Câu 47. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A. −4.
B.
.
C. −2.
D. −7.
27
Z 2
ln(x + 1)
Câu 48. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. −3.
B. 1.
C. 0.
D. 3.
Câu 49. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−3; 1].
B. (−∞; −3].
C. [1; +∞).
D. [−1; 3].
Câu 50. Bát diện đều thuộc loại

A. {3; 4}.
B. {3; 3}.

C. {4; 3}.

D. {5; 3}.
Trang 4/10 Mã đề 1


Câu 51.
đề nào sai? Z
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh Z
A.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
B.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Z
Z
Z
Z
Z
C.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
D.
f (x)g(x)dx =
f (x)dx g(x)dx.
Câu 52. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và

S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

a3 6
a3 3
a3 6
a3 6
.
B.
.
C.
.
D.
.
A.
24
48
24
8
x−2
Câu 53. Tính lim
x→+∞ x + 3
2
D. 2.
A. −3.
B. 1.
C. − .
3
Câu 54. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?

A. Nhị thập diện đều. B. Thập nhị diện đều. C. Bát diện đều.
D. Tứ diện đều.
Câu 55. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Tăng lên (n − 1) lần. B. Không thay đổi.
C. Giảm đi n lần.
D. Tăng lên n lần.
Câu 56. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. −5.
B. 5.
C. −6.
2

D. 6.

Câu 57. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n2 lần.
B. n lần.
C. 3n3 lần.
D. n3 lần.
x3 − 1
Câu 58. Tính lim
x→1 x − 1
A. 0.
B. −∞.
C. 3.
D. +∞.
√3
Câu 59. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga a bằng
1

1
A. −3.
B. − .
C. 3.
D. .
3
3
Câu 60. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết
S
H

(ABCD),
S
A
=
a
5. Thể tích khối chóp S .ABCD là


3
3
2a
4a3
4a3 3
2a 3
.
B.
.

C.
.
D.
.
A.
3
3
3
3
Câu 61. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
6
9
18
15
Câu 62. Khối đa diện đều loại {3; 5} có số đỉnh
A. 8.
B. 20.
C. 30.
D. 12.
7n2 − 2n3 + 1

Câu 63. Tính lim 3
3n + 2n2 + 1
2
7
A. - .
B. 1.
C. 0.
D. .
3
3
2
2
Câu 64. Tìm giá trị nhỏ nhất của hàm số y = (x − 2x + 3) − 7
A. −7.
B. Không tồn tại.
C. −3.
D. −5.
1 − 2n
Câu 65. [1] Tính lim
bằng?
3n + 1
1
2
2
A. .
B. − .
C. .
D. 1.
3
3

3
Trang 5/10 Mã đề 1


Câu 66.
Z Trong cácα+1khẳng định sau, khẳng định nào sai? Z
x
1
+ C, C là hằng số.
B.
dx = ln |x| + C, C là hằng số.
A.
xα dx =
α+1
Z
Z x
C.

dx = x + C, C là hằng số.

D.

0dx = C, C là hằng số.

d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 67. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là




a3 3
a3 2
a3 3
2
A.
.
B.
.
C. 2a 2.
D.
.
12
24
24
Câu 68. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 5
a3 5
a3 3
.
B.
.
C.
.
D.
.
A.

12
6
4
12
Câu 69. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. Vô nghiệm.
C. 2.
D. 1.
Câu 70. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 − ln x.
B. y0 = ln x − 1.

C. y0 = 1 + ln x.

D. y0 = x + ln x.

2

Câu 71. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
1
1
A. 3 .
B. √ .
C. 2 .
2e
e
2 e


2
.
e3
 π π
Câu 72. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. −1.
B. 1.
C. 3.
D. 7.
D.

Câu 73. Tính diện tích hình phẳng giới hạn bởi các đường y = xe x , y = 0, x = 1. √
1
3
3
A. .
B. 1.
C. .
D.
.
2
2
2
Câu 74. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn cạnh.
B. Hai cạnh.
C. Năm cạnh.
D. Ba cạnh.


Câu 75. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. Vơ số.
C. 64.
D. 63.
2n − 3
Câu 76. Tính lim 2
bằng
2n + 3n + 1
A. −∞.
B. 0.
C. +∞.
D. 1.
Câu 77. Khối lập phương thuộc loại
A. {5; 3}.
B. {3; 4}.

C. {4; 3}.

D. {3; 3}.

Câu 78. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác S AB đều và nằm trong mặt
Thể tích khối chóp
√ S .ABCD là
√ phẳng vng góc với 3(ABCD).

3
3


a 3
a 3
a 2
A. a3 3.
B.
.
C.
.
D.
.
2
4
2
Câu 79. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −2e2 .
B. 2e4 .
C. −e2 .
D. 2e2 .
Câu 80. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1728
23
1637
1079
A.
.
B.
.
C.

.
D.
.
4913
68
4913
4913
Trang 6/10 Mã đề 1


Câu 81. Tính lim
x→3

A. 6.

x2 − 9
x−3

B. +∞.

C. −3.

D. 3.
4
3

Câu 82. [1-c] Cho a là số thực dương .Giá trị của biểu thức a :
2
5
7

A. a 3 .
B. a 3 .
C. a 3 .
Câu 83. Khối đa diện đều loại {3; 4} có số đỉnh
A. 8.
B. 6.

√3

a2 bằng
5

D. a 8 .

C. 4.

D. 10.

Câu 84. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. e2016 .
B. 0.
C. 1.
D. 22016 .
Câu 85. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (1; +∞).
B. Hàm số đồng biến trên khoảng (1; 2).
C. Hàm số nghịch biến trên khoảng (0; 1).
D. Hàm số nghịch biến trên khoảng (−∞; 0).
Câu 86. Cho

Z hai hàm yZ= f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
B. Nếu
Z
Z
0
C. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
1
Câu 87. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2] ∪ [−1; +∞). B. (−∞; −2) ∪ (−1; +∞). C. −2 ≤ m ≤ −1.
D. −2 < m < −1.
Câu 88. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

A. β = a β .

B. aα+β = aα .aβ .
C. aα bα = (ab)α .
D. aαβ = (aα )β .
a
Câu 89. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,
√ N, P bằng



14 3
20 3
A.
.
B. 6 3.
C. 8 3.
D.
.
3
3
Câu 90. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ
√ min |z − 1 − i|.
√ thức |z − 1 + 3i| = 3. Tìm
A. 2.
B. 1.
C. 10.
D. 2.
Câu 91. [1] !Tập xác định của hàm số y! = log3 (2x + 1) là
!

1
1
1
B.
; +∞ .
C. −∞; − .
A. −∞; .
2
2
2
Câu 92. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 2.

B. 3.

C. 1.

Câu 93. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (1; +∞).
B. (−1; 1).
C. (−∞; −1).

!
1
D. − ; +∞ .
2
1
3|x−1|


= 3m − 2 có nghiệm duy

D. 4.
D. (−∞; 1).
Trang 7/10 Mã đề 1


Câu 94. [1-c] Giá trị của biểu thức
A. −2.

log7 16
log7 15 − log7

15
30

B. 2.
0

0

0

bằng
C. 4.

D. −4.

0


Câu 95. [3] Cho hình lập phương ABCD.A B C D có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
0 0
(AB0C) và


√ (A C D) bằng

a 3
a 3
2a 3
.
B.
.
C. a 3.
D.
.
A.
2
3
2
Câu 96. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm hình chóp tam giác đều, khơng có tứ diện đều.
B. Một tứ diện đều và bốn hình chóp tam giác đều.
C. Bốn tứ diện đều và một hình chóp tam giác đều.
D. Năm tứ diện đều.
Câu 97. Khối chóp ngũ giác có số cạnh là
A. 11 cạnh.
B. 12 cạnh.
C. 10 cạnh.

D. 9 cạnh.
x
9
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
Câu 98. [2-c] Cho hàm số f (x) = x
9 +3
1
A. 2.
B. .
C. 1.
D. −1.
2
log2 240 log2 15
Câu 99. [1-c] Giá trị biểu thức

+ log2 1 bằng
log3,75 2 log60 2
A. 3.
B. −8.
C. 4.
D. 1.
6
Câu 100. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2 f (x3 ) − √
. Tính
3x
+
1
Z 1
f (x)dx.
0


A. −1.

B. 2.

C. 4.

Câu 101. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai mặt.
B. Năm mặt.
C. Ba mặt.

D. 6.
D. Bốn mặt.

Câu 102. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 6.
B. V = 4.
C. V = 5.
D. V = 3.
Câu 103. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 1; m = 1.
B. M = e2 − 2; m = e−2 + 2.
C. M = e−2 − 2; m = 1.
D. M = e−2 + 2; m = 1.
!
!
!
1

2
2016
4x
. Tính tổng T = f
+f
+ ··· + f
Câu 104. [3] Cho hàm số f (x) = x
4 +2
2017
2017
2017
2016
A. T = 1008.
B. T =
.
C. T = 2016.
D. T = 2017.
2017
Câu 105. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối lập phương.
C. Khối bát diện đều. D. Khối tứ diện đều.
Câu 106. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lập phương.
B. Khối bát diện đều.
C. Khối lăng trụ tam giác.
D. Khối tứ diện.
x+2
Câu 107. Tính lim
bằng?

x→2
x
A. 2.
B. 1.
C. 0.

D. 3.
Trang 8/10 Mã đề 1


Câu 108. Cho I =

Z

3

x


dx =

0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 4.
B. P = 16.

a
a
+ b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
d

d

Câu 109. [2] Phương trình log4 (x + 1)2 + 2 = log √2
A. 3 nghiệm.
B. 2 nghiệm.

C. P = 28.
D. P = −2.

4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
C. Vô nghiệm.
D. 1 nghiệm.

Câu 110. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. 2.
C. Vô nghiệm.


4n2 + 1 − n + 2
Câu 111. Tính lim
bằng
2n − 3
3
A. 1.
B. +∞.
C. .
2
2n + 1
Câu 112. Tính giới hạn lim

3n + 2
3
1
B. 0.
C. .
A. .
2
2
0
Câu 113. [2] Cho hàm số y = ln(2x + 1). Tìm m để y (e) = 2m + 1
1 + 2e
1 − 2e
1 + 2e
A. m =
.
B. m =
.
C. m =
.
4 − 2e
4e + 2
4e + 2
Câu 114. [1] Đạo hàm của hàm số y = 2 x là
1
A. y0 =
.
B. y0 = 2 x . ln 2.
C. y0 = 2 x . ln x.
ln 2


D. 3.

D. 2.

D.

2
.
3

D. m =
D. y0 =

1 − 2e
.
4 − 2e
1

.
x
d = 120◦ .
Câu 115. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
D. 3a.
A. 2a.
B. 4a.
C.
2

3
2
Câu 116. Giá
√ trị cực đại của hàm số√y = x − 3x − 3x + 2


A. −3 + 4 2.
B. 3 − 4 2.
C. −3 − 4 2.
D. 3 + 4 2.
2 x . ln

d = 30◦ , biết S BC là tam giác đều
Câu 117. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.

9
26
16
13
8
Câu 118. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 82.
B. 96.
C. 81.
D. 64.
Câu 119. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích
hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 2.
B. 0, 5.
C. 0, 3.
D. 0, 4.
Câu 120. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là 4.
B. Phần thực là −3, phần ảo là −4.
C. Phần thực là 3, phần ảo là 4.
D. Phần thực là 3, phần ảo là −4.
Câu 121. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d ⊥ P.
B. d song song với (P).
C. d nằm trên P hoặc d ⊥ P.
D. d nằm trên P.
Câu 122. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1

1
A. .
B. .
C. .
D. 4.
4
2
8
Trang 9/10 Mã đề 1


Câu 123. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách √
từ C đến đường thẳng BB0 bằng 2, khoảng
cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2
3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3


2 3
.
C. 1.
D. 3.
A. 2.
B.
3
Câu 124. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?

A. 4 đỉnh, 8 cạnh, 4 mặt. B. 6 đỉnh, 6 cạnh, 4 mặt. C. 3 đỉnh, 3 cạnh, 3 mặt. D. 4 đỉnh, 6 cạnh, 4 mặt.

Câu 125. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã



√ cho là
πa3 6
πa3 3
πa3 3
πa3 3
.
B. V =
.
C. V =
.
D. V =
.
A. V =
2
6
3
6
Câu 126. Khối đa diện đều loại {4; 3} có số mặt
A. 8.
B. 12.
C. 10.
D. 6.
Câu 127. Khối đa diện đều loại {4; 3} có số cạnh

A. 30.
B. 20.

C. 10.

D. 12.

Câu 128. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối tứ diện đều.

C. Khối lập phương.

D. Khối 12 mặt đều.

Câu 129. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; 3).
B. A0 (−3; 3; 3).
C. A0 (−3; 3; 1).
D. A0 (−3; −3; −3).
Câu 130. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. [6, 5; +∞).
B. (−∞; 6, 5).
C. (4; +∞).

D. (4; 6, 5].

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1



ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A

2.

3.
5.

C
B
D

7.

4.

D

6.

D
C

8.

9. A

11.

C

B

10.

B

12.

B

14. A

13. A
15.

D

16. A

17. A

18.

C

19.


C

20. A

21.

C

22.

B

23.

B

24.

B

25.

B

26.

B

27. A

29.
31.

C

28.
D
B

30.

B

32.

B

33. A

34.

35. A

36.
D

C
B

38.


D

39. A

40.

D

41. A

42.

D

44.

D

37.

43.

B

45. A

46.

47.


48. A

C

49. A

50. A

51.
53.

B

D

52. A
54.

B

55.

B

56. A

C

57.


D

58.

C

59.

D

60.

C

62.

D

63. A

64.

B

65.
67.

66. A
68.


B

D

69.
1

D
C


70.
72.

71.

C
B

73.

74.

D

C
B

75. A


76.

B

77.

C

78.

B

79.

C

80.

81. A

C

82. A

83.

B

84.


B

85.

C

86.

B

87.

C

88. A
90.

89.
C

94.
96.

D

91.

B


92.

B

D
B

93.

B

95.

B
C

97.

98.

C

99.

100.

C

101.


C

103.

C

105.

C

102.

B

104. A
106.

D

107. A

108. A

109.

110. A

111. A
D


112.
114.

B

B

B

113.

C

115.

C

117.

116. A
118.

C

D

119.

C


120. A

121.

C

122. A

123. A

124.

D

125.

126.

D

127.

128.
130.

B

129.
D


2

C
D
B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×