Tải bản đầy đủ (.pdf) (13 trang)

Đề ôn toán thptqg 1 (137)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (151.34 KB, 13 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Hàm số f có nguyên hàm trên K nếu
A. f (x) liên tục trên K.
C. f (x) có giá trị lớn nhất trên K.

B. f (x) có giá trị nhỏ nhất trên K.
D. f (x) xác định trên K.
1
Câu 2. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3

một đoạn có độ dài bằng 24.
A. −3 ≤ m ≤ 4.
B. m = 4.
C. m = −3.
D. m = −3, m = 4.
Câu 3. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B thuộc
∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và AC = BD = a.
Khoảng√cách từ A đến mặt phẳng√(BCD) bằng


a 2
a 2


D. a 2.
A.
.
B.
.
C. 2a 2.
2
4
n−1
Câu 4. Tính lim 2
n +2
A. 2.
B. 0.
C. 1.
D. 3.
Câu 5. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. f (x) có giới hạn hữu hạn khi x → a.
B. lim+ f (x) = lim− f (x) = a.
x→a
x→a
C. lim+ f (x) = lim− f (x) = +∞.
D. lim f (x) = f (a).
x→a

x→a

x→a

Câu 6. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi

cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.016.000.
B. 102.423.000.
C. 102.424.000.
D. 102.016.000.
Câu 7. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; +∞).
B. Hàm số nghịch biến trên khoảng (0; 2).
C. Hàm số nghịch biến trên khoảng (−∞; 2).
D. Hàm số đồng biến trên khoảng (0; 2).
Câu 8. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 3}.
B. {3; 4}.

C. {4; 3}.

D. {5; 3}.

Câu 9. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −5.
B. −12.
C. −15.
D. −9.
2
x − 3x + 3
đạt cực đại tại
Câu 10. Hàm số y =
x−2

A. x = 0.
B. x = 3.
C. x = 2.
D. x = 1.
2

Câu 11. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (2; +∞).
B. (0; 2).
C. R.

D. (−∞; 1).

2

1−n
bằng?
2n2 + 1
1
1
A. 0.
B. .
C. .
2
3
3
2
Câu 13. Giá√trị cực đại của hàm số y =
√ x − 3x − 3x + 2


A. −3 − 4 2.
B. −3 + 4 2.
C. 3 + 4 2.

Câu 12. [1] Tính lim

1
D. − .
2

D. 3 − 4 2.
Trang 1/10 Mã đề 1


Câu 14. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
Câu 15. Cho hình chóp S .ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy một góc 60◦ . Thể tích khối

√ chóp S .ABCD là 3 √
3

a 3
a3 3
2a 3
3
.

C.
.
D.
.
A. a 3.
B.
3
3
6
Câu 16.
Z Trong các khẳng định sau, khẳng định nào sai? Z
dx = x + C, C là hằng số.

A.
Z
C.

B.

xα+1
+ C, C là hằng số.
x dx =
α+1

Z

α

D.


0dx = C, C là hằng số.
1
dx = ln |x| + C, C là hằng số.
x

Câu 17. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. Cả ba câu trên đều sai.
B. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
C. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
D. F(x) = G(x) trên khoảng (a; b).
Câu 18. Thể tích của khối lăng√trụ tam giác đều có cạnh √
bằng 1 là:
3
3
3
B.
.
C.
.
A. .
4
2
12


3
D.
.
4


Câu 19. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có một.
B. Khơng có.
C. Có vơ số.
D. Có hai.
Câu 20. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. 6.
B. −5.
C. −6.
2−n
Câu 21. Giá trị của giới hạn lim
bằng
n+1
A. 2.
B. 1.
C. 0.
2

D. 5.

D. −1.

Câu 22. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. 1.
C. Vơ nghiệm.
D. 2.
Câu 23. Tính lim

A. 2.

2n2 − 1
3n6 + n4
B. 0.

C. 1.

D.

2
.
3

Câu 24. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,
√ N, P bằng



14 3
20 3
A.
.
B. 6 3.
C.
.
D. 8 3.
3

3
Câu 25. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó không rút tiền ra?
A. 12 năm.
B. 14 năm.
C. 10 năm.
D. 11 năm.
Trang 2/10 Mã đề 1


12 + 22 + · · · + n2
Câu 26. [3-1133d] Tính lim
n3
2
A. .
B. +∞.
C. 0.
3
Câu 27. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. e.
B. 4 − 2 ln 2.
C. −2 + 2 ln 2.

D.

1
.
3


D. 1.


Câu 28. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã



√ cho là
3
πa3 3
πa3 6
πa3 3
πa 3
.
B. V =
.
C. V =
.
D. V =
.
A. V =
3
2
6
6
1
Câu 29. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3

A. 2 < m ≤ 3.
B. 2 ≤ m ≤ 3.
C. 0 < m ≤ 1.
D. 0 ≤ m ≤ 1.

Câu 30. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n3 lần.
B. n lần.
C. 3n3 lần.
D. n2 lần.
Câu 31. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối tứ diện đều.

C. Khối bát diện đều.

D. Khối 12 mặt đều.

Câu 32.
đề nào sau đây sai?
Z [1233d-2] Mệnh
Z
A.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z
B.
[ f (x) − g(x)]dx =

f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
Z
C.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
D.
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Câu 33. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối lập phương.

C. Khối 12 mặt đều.

D. Khối bát diện đều.

Câu 34. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 6 lần.
B. Tăng gấp 8 lần.
C. Tăng gấp đôi.
D. Tăng gấp 4 lần.
Câu 35. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. 2n3 lần.
C. 2n2 lần.
D. n3 lần.

x−3
bằng?
Câu 36. [1] Tính lim
x→3 x + 3
A. +∞.
B. 1.
C. 0.
D. −∞.
Câu 37. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất khơng đổi và người đó khơng rút tiền ra?
A. 10 năm.
B. 11 năm.
C. 12 năm.
D. 13 năm.
Câu 38. Mệnh đề nào sau đây sai?
A. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a;Zb).
B. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

f (x)dx = F(x) + C.

C. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
!0
Z
D.
f (x)dx = f (x).
Trang 3/10 Mã đề 1



Câu 39. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 + ln x.
B. y0 = 1 − ln x.

C. y0 = x + ln x.

D. y0 = ln x − 1.

Câu 40. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều.

C. Khối tứ diện đều.

D. Khối 20 mặt đều.

Câu 41. Giá trị lớn nhất của hàm số y =
A. 0.

B. −5.

2mx + 1
1
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
C. 1.
D. −2.

Câu 42.√Thể tích của tứ diện đều √

cạnh bằng a
3
3
a 2
a 2
A.
.
B.
.
6
2


a3 2
C.
.
4

Câu 43. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; +∞).
B. (−∞; 2).

C. (−∞; 0) và (2; +∞). D. (0; 2).


a3 2
D.
.
12


Câu 44. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
23
5
9
13
A. −
.
B. − .
C.
.
D.
.
100
16
25
100
Câu 45. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC) một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √

a3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.

D.
.
4
4
8
12
1
Câu 46. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 ≤ m ≤ −1.
B. −2 < m < −1.
C. (−∞; −2] ∪ [−1; +∞). D. (−∞; −2) ∪ (−1; +∞).

Câu 47. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.


√ tích khối chóp S .ABC3 √
3
a 6
a3 6
a3 6
a 2
.
B.
.
C.
.

D.
.
A.
6
36
18
6
Câu 48. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là 1.
B. Phần thực là −1, phần ảo là 4.
C. Phần thực là −1, phần ảo là −4.
D. Phần thực là 4, phần ảo là −1.
Câu 49. Khối đa diện đều loại {4; 3} có số cạnh
A. 20.
B. 30.

C. 10.

Câu 50. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 1.
B. 2.
C. −1.
1 − 2n
Câu 51. [1] Tính lim
bằng?
3n + 1
1
2
2
A. .

B. − .
C. .
3
3
3

D. 12.
D. 6.

D. 1.

Câu 52. Giá trị của lim(2x2 − 3x + 1) là
x→1

A. 0.

B. 2.

C. +∞.

D. 1.

Câu 53. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 4.
B. 12.
C. 10.
D. 11.
Trang 4/10 Mã đề 1






x = 1 + 3t




Câu 54. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua




z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là












x
=
1
+
7t
x
=
−1
+
2t
x
=
1
+
3t
x = −1 + 2t

















A. 
.
B. 
D. 
y=1+t
y = −10 + 11t . C. 
y = 1 + 4t .
y = −10 + 11t .
















z = 1 + 5t
z = −6 − 5t
z = 1 − 5t
z = 6 − 5t

Câu 55. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {3}.
B. {5}.
C. {2}.
D. {5; 2}.
Câu 56. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 22016 .
B. 0.
C. e2016 .
D. 1.
x
x−3 x−2 x−1
+
+
+
và y = |x + 2| − x − m (m là tham
Câu 57. [4-1213d] Cho hai hàm số y =
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2).
B. (2; +∞).
C. [2; +∞).
D. (−∞; 2].
4x + 1
bằng?
x→−∞ x + 1

B. 2.

Câu 58. [1] Tính lim
A. −1.

C. 4.

D. −4.

Câu 59. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số mặt của khối chóp.
B. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
C. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
D. Số cạnh của khối chóp bằng số mặt của khối chóp.

Câu 60. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là

3
3

a3
3
a 3
a
.
B.
.
C. a3 3.

.
A.
D.
3
4
12
x+2
Câu 61. Tính lim
bằng?
x→2
x
A. 2.
B. 3.
C. 1.
D. 0.
Câu 62. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là


3
3
a 3
a 6
a3 3
a3 2
A.
.
B.
.

C.
.
D.
.
24
48
48
16
Câu 63.! Dãy số nào sau đây có giới! hạn là 0?
n
n
5
5
A.
.
B. − .
3
3

!n
4
C.
.
e

!n
1
D.
.
3


Câu 64. [2]√Tìm m để giá trị lớn nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 8
A. m = ± 3.
B. m = ± 2.
C. m = ±3.
D. m = ±1.
Câu 65.
√ [4-1246d] Trong tất cả các số phức z thỏa mãn |z√− i| = 1. Tìm giá trị lớn nhất của |z|
A. 5.
B. 1.
C. 3.
D. 2.
Trang 5/10 Mã đề 1


Câu 66. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 4.
B. V = 6.
C. V = 3.
D. V = 5.
Câu 67. Khối đa diện đều loại {3; 3} có số đỉnh
A. 2.
B. 5.
Câu 68. Hàm số nào sau đây khơng có cực trị
1
B. y = x4 − 2x + 1.
A. y = x + .
x


C. 3.
C. y =

D. 4.
x−2
.
2x + 1

D. y = x3 − 3x.

Câu 69. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 3.
B. 1.
C. 2.
D. Vô số.
Câu 70. Phát biểu nào sau đây là sai?
1
A. lim k = 0.
n
C. lim qn = 0 (|q| > 1).
Câu 71. Khối đa diện đều loại {5; 3} có số mặt
A. 20.
B. 8.
x−2
Câu 72. Tính lim
x→+∞ x + 3
2
B. 1.
A. − .

3

1
= 0.
n
D. lim un = c (un = c là hằng số).

B. lim

C. 12.

D. 30.

C. 2.

D. −3.

Câu 73. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 3ac
3b + 2ac
A.
.
B.
.
C.
.
c+1
c+2
c+2


D.

3b + 2ac
.
c+3

Câu 74. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
B. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số nghịch biến trên khoảng (−2; 1).
D. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
Câu 75. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a 3
a
A. .
B. .
C.
.
D. a.
2
3
2
Câu 76. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1

A. −e.
B. − .
C. − 2 .
D. − .
e
e
2e
Z 3
a
x
a
Câu 77. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 16.
B. P = 4.
C. P = −2.
D. P = 28.
Z 1
6
2
3
Câu 78. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
. Tính
f (x)dx.
0

3x + 1
A. 6.

B. 4.

C. −1.

Câu 79. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 5}.
B. {3; 4}.
C. {4; 3}.

D. 2.
D. {5; 3}.
Trang 6/10 Mã đề 1


Câu 80. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Một mặt.
B. Bốn mặt.
C. Ba mặt.
Câu 81. [1] Đạo hàm của làm số y = log x là
1
1
.
B. y0 = .
A.
10 ln x
x


C. y0 =

D. Hai mặt.

ln 10
.
x

D. y0 =
2

1
.
x ln 10

2

sin x
Câu 82.
+ 2cos x lần lượt là
√ [3-c] Giá trị nhỏ nhất và√giá trị lớn nhất của hàm số f (x)
√ =2
A. 2 và 3.
B. 2 2 và 3.
C. 2 và 2 2.
D. 2 và 3.

Câu 83. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (0; −2).
B. (1; −3).

C. (−1; −7).

D. (2; 2).

Câu 84. [1231h] Trong khơng gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x+1 y−4 z−4
x−2 y−3 z+4
=
=
và d0 :
=
=
đường thẳng d :
2
3
−5
3
−2
−1
x−2 y+2 z−3
x−2 y−2 z−3
A.
=
=
.
B.
=
=
.
2

2
2
2
3
4
x y z−1
x y−2 z−3
=
.
D. = =
.
C. =
2
3
−1
1 1
1
Câu 85. [1] Hàm số nào đồng√biến trên khoảng (0; +∞)?
A. y = loga x trong đó a = 3 − 2.
B. y = log √2 x.
C. y = log π4 x.
D. y = log 14 x.
Câu 86. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 87. Khối đa diện đều loại {3; 4} có số mặt
A. 8.
B. 6.


C. 10.

Câu 88. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 7 mặt.
B. 8 mặt.
C. 6 mặt.

D. 12.
D. 9 mặt.

x+3
Câu 89. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 3.
B. 2.
C. 1.
D. Vô số.
Câu 90. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 20.
B. 3, 55.
C. 24.
D. 15, 36.
Câu 91. Khối đa diện đều loại {3; 4} có số đỉnh
A. 10.
B. 4.


C. 6.

D. 8.

Câu 92. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
6
9
18
15
0 0 0 0
0
Câu 93.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 6
a 6
a 3
A.

.
B.
.
C.
.
D.
.
2
7
3
2

Trang 7/10 Mã đề 1


Câu 94. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp tứ giác.
B. Hai khối chóp tứ giác.
C. Một khối chóp tam giác, một khối chóp ngữ giác.
D. Hai khối chóp tam giác.


Câu 95.
Tìm
giá
trị
lớn
nhất
của
hàm

số
y
=
x
+
3
+
6√− x


A. 2 3.
B. 3.
C. 3 2.
D. 2 + 3.
Câu 96. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 0.
B. 1.
C. 3.

D. 2.

d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 97. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là



a3 3
a3 2

a3 3
2
.
B. 2a 2.
C.
.
D.
.
A.
12
24
24
Câu 98. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
B. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Z
u0 (x)
dx = log |u(x)| + C.
C.
u(x)
D. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
Câu 99. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tứ giác.
B. Một hình chóp tứ giác và một hình chóp ngũ giác.
C. Một hình chóp tam giác và một hình chóp tứ giác.
D. Hai hình chóp tam giác.
!
5 − 12x

Câu 100. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. Vô nghiệm.
B. 3.
C. 2.
D. 1.
Câu 101. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 9 năm.
B. 8 năm.
C. 7 năm.
D. 10 năm.
Câu 102. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 72cm3 .
C. 46cm3 .
D. 27cm3 .
π
Câu 103. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu √
thức T = a + b 3.

A. T = 3 3 + 1.
B. T = 4.
C. T = 2.

D. T = 2 3.
log 2x
Câu 104. [3-1229d] Đạo hàm của hàm số y =

x2
1 − 4 ln 2x
1
1 − 2 ln 2x
1 − 2 log 2x
0
0
0
A. y0 =
.
B.
y
=
.
C.
y
=
.
D.
y
=
.
x3
2x3 ln 10
2x3 ln 10
x3 ln 10

Câu 105. Cho hai hàm y = f (x), y = Z
g(x) có đạo hàm
Z trên R. Phát biểu nào sau đây đúng?
A. Nếu f (x) = g(x) + 1, ∀x ∈ R thì

f 0 (x)dx =

g0 (x)dx.
Trang 8/10 Mã đề 1


Z
B. Nếu
Z
C. Nếu
Z
D. Nếu

f (x)dx =

Z

f (x)dx =

Z

g(x)dx thì f (x) = g(x), ∀x ∈ R.

f 0 (x)dx =


Z

g0 (x)dx thì f (x) = g(x), ∀x ∈ R.

g(x)dx thì f (x) , g(x), ∀x ∈ R.

Câu 106. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 212 triệu.
B. 216 triệu.
C. 210 triệu.
D. 220 triệu.
Câu 107. Khối đa diện đều loại {3; 3} có số mặt
A. 2.
B. 4.

C. 5.

D. 3.

Câu 108. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa hai đường thẳng S B và AD bằng




a 2

a 2
.
D.
.
B. a 3.
C.
A. a 2.
3
2
1 − xy
Câu 109. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ
x + 2y
nhất Pmin của P√ = x + y.



2 11 − 3
18 11 − 29
9 11 − 19
9 11 + 19
. B. Pmin =
.
C. Pmin =
. D. Pmin =
.
A. Pmin =
9
3
21

9
Câu 110. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
D. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
2n + 1
n+1
A. 0.
B. 3.
C. 2.
D. 1.
mx − 4
Câu 112. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 45.
B. 26.
C. 34.
D. 67.

Câu 111. Tìm giới hạn lim

Câu 113. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m < 3.
B. m ≥ 3.
C. m > 3.
D. m ≤ 3.
Câu 114. Khẳng định nào sau đây đúng?

A. Hình lăng trụ tứ giác đều là hình lập phương.
B. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ đứng là hình lăng trụ đều.
9t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao
9t + m2
cho f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 0.
B. 1.
C. Vô số.
D. 2.
Câu 115. [4] Xét hàm số f (t) =

Trang 9/10 Mã đề 1


Câu 116. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung
điểm cạnh AB, biết S H ⊥ (ABCD).√Thể tích khối chóp S .ABCD
√ là
3
3
3
a
4a 3
2a 3
a3
A.
.
B.

.
C.
.
D.
.
3
3
3
6
Câu 117. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
0 0
(AB0C) và
√ (A C D) bằng



2a 3
a 3
a 3
A.
.
B.
.
C. a 3.
D.
.
2
3
2
Câu 118. [1] Giá trị của biểu thức 9log3 12 bằng

A. 4.
B. 144.

C. 2.

D. 24.

Câu 119. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (II).

B. (I) và (III).

C. Cả ba mệnh đề.

D. (II) và (III).

Câu 120. Cho hình chóp S .ABCD có đáy ABCD là hình thang vuông tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt phẳng vng góc với (ABCD).
Thể tích khối chóp
√ S .ABCD là

3
3
3


a 3
a 2
a 3
.
B. a3 3.
C.
.
D.
.
A.
4
2
2
!2x−1
!2−x
3
3
Câu 121. Tập các số x thỏa mãn


5
5
A. (+∞; −∞).
B. (−∞; 1].
C. [1; +∞).
D. [3; +∞).

Câu 122. Thể tích của khối lập phương
có cạnh bằng a 2


3


2a 2
A. V = a3 2.
B.
.
C. V = 2a3 .
D. 2a3 2.
3
!4x
!2−x
3
2


Câu 123. Tập các số x thỏa mãn
3 #
2
#
"
!
"
!
2
2
2
2
A. −∞; .
B. −∞; .

C.
; +∞ .
D. − ; +∞ .
3
5
5
3
Câu 124. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 21.
B. P = 10.
C. P = −10.
D. P = −21.
!
1
1
1
Câu 125. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3
5
A. +∞.
B. 2.
C. .
D. .
2
2
Câu 126. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục thực.

B. Đường phân giác góc phần tư thứ nhất.
C. Hai đường phân giác y = x và y = −x của các góc tọa độ.
D. Trục ảo.
Trang 10/10 Mã đề 1


Câu 127. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích
hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 5.
B. 0, 4.
C. 0, 2.
D. 0, 3.
!
x+1
Câu 128. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
4035
2017
2016
.
C.
.
D.
.
A. 2017.
B.
2017
2018
2018

2

Câu 129. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 5.
B. 6.
C. 8.
D. 7.
!
!
!
x
4
1
2
2016
Câu 130. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T = 2017.
B. T =
.
C. T = 2016.
D. T = 1008.
2017

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 11/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A

2.

3. A

4.

D
B

5.

D

6.

7.

D

8.


D

C

9.

B

10.

D

11.

B

12.

D

13.

B

14. A

15.
17.


C

16.
D

20.

21.

D

22.

B

24.

25.

D

28. A

29. A

30. A

31.

D


34.
D

37.

D
B
D

32. A

B

35.

B

26.

27. A

33.

D

18.

B


19.
23.

C

B

36.

C

C

38. A

39. A

40.

D

41. A

42.

D

43.

C


44. A

45.

C

46. A

47.

C

48.

D

50.

D

49.

D

51.

B

52. A


53.

B

54.

55.

B

56.

57.

C

D
B

58.

59. A

60. A

61. A

62.


63.

D

64.

65.

D

66. A

67.

D

68.
1

C
C
B
C


69.

C

70.


71.

C

72.

B

74.

B

73.

B

75.
77.

76.

D
B

79. A
D

81.


D

78.

B

80.

B

82.

B
D

84.

83. A
85.

C

B

C

86.

87. A


88.

D

89. A

90.

D

C

93.

C

94. A

95.

C

96. A

97.

D

99.


D

91.

C

98.
100.

D

101. A

102.

D

103.

104.

D

105.

106. A
108.

D


B

109.

B

C

111.

112.

C

113.

114.

B

115.

116.

B

117.

118.


B

119. A

C
B
D
B

121.

C

122.

D

123.

124.

D

125.

126.

C

107.


110.

120.

B

C

128.

D

130.

D

2

C
D
B

127.

D

129.

D




Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×