Tải bản đầy đủ (.pdf) (70 trang)

huba j.d. (ed.) the natl. plasma physics formulary

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (405.74 KB, 70 trang )

2004
REVISED
NRL PLASMA FORMULARY
J.D. Huba
Beam Physics Branch
Plasma Physics Division
Naval Research Laboratory
Washington, DC 20375
Supported by
The Office of Naval Research
1
FOREWARD
The NRL Plasma Formulary originated over twenty five years ago and
has been revised several times during this period. The guiding spirit and per-
son primarily responsible for its existence is Dr. David Book. I am indebted to
Dave for providing me with the T
E
X files for the Formulary and his continued
suggestions for improvement. The Formulary has been set in T
E
X by Dave
Book, Todd Brun, and Robert Scott. Finally, I thank readers for communicat-
ing typographical errors to me.
2
CONTENTS
Numerical and Algebraic . . . . . . . . . . . . . . . . . . . . . 4
Vector Identities . . . . . . . . . . . . . . . . . . . . . . . . . 5
Differential Operators in Curvilinear Coordinates . . . . . . . . . . . 7
Dimensions and Units . . . . . . . . . . . . . . . . . . . . . . . 11
International System (SI) Nomenclature . . . . . . . . . . . . . . . 14
Metric Prefixes . . . . . . . . . . . . . . . . . . . . . . . . . . 14


Physical Constants (SI) . . . . . . . . . . . . . . . . . . . . . . 15
Physical Constants (cgs) . . . . . . . . . . . . . . . . . . . . . 17
Formula Conversion . . . . . . . . . . . . . . . . . . . . . . . 19
Maxwell’s Equations . . . . . . . . . . . . . . . . . . . . . . . 20
Electricity and Magnetism . . . . . . . . . . . . . . . . . . . . . 21
Electromagnetic Frequency/Wavelength Bands . . . . . . . . . . . . 22
AC Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Dimensionless Numbers of Fluid Mechanics . . . . . . . . . . . . . 24
Shocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Fundamental Plasma Parameters . . . . . . . . . . . . . . . . . . 29
Plasma Dispersion Function . . . . . . . . . . . . . . . . . . . . 31
Collisions and Transport . . . . . . . . . . . . . . . . . . . . . 32
Ionospheric Parameters . . . . . . . . . . . . . . . . . . . . . . 41
Solar Physics Parameters . . . . . . . . . . . . . . . . . . . . . 42
Thermonuclear Fusion . . . . . . . . . . . . . . . . . . . . . . 43
Relativistic Electron Beams . . . . . . . . . . . . . . . . . . . . 45
Beam Instabilities . . . . . . . . . . . . . . . . . . . . . . . . 47
Approximate Magnitudes in Some Typical Plasmas . . . . . . . . . . 49
Lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Atomic Physics and Radiation . . . . . . . . . . . . . . . . . . . 53
Atomic Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . 59
Complex (Dusty) Plasmas . . . . . . . . . . . . . . . . . . . . . 62
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3
NUMERICAL AND ALGEBRAIC
Gain in decibels of P
2
relative to P
1
G = 10 log

10
(P
2
/P
1
).
To within two percent
(2π)
1/2
≈ 2.5; π
2
≈ 10; e
3
≈ 20; 2
10
≈ 10
3
.
Euler-Mascheroni constant
1
γ = 0.57722
Gamma Function Γ(x + 1) = xΓ(x):
Γ(1/6) = 5.5663 Γ(3/5) = 1.4892
Γ(1/5) = 4.5908 Γ(2/3) = 1.3541
Γ(1/4) = 3.6256 Γ(3/4) = 1.2254
Γ(1/3) = 2.6789 Γ(4/5) = 1.1642
Γ(2/5) = 2.2182 Γ(5/6) = 1.1288
Γ(1/2) = 1.7725 =

π Γ(1) = 1.0

Binomial Theorem (good for | x |< 1 or α = positive integer):
(1 + x)
α
=


k=0

α
k

x
k
≡ 1 + αx +
α(α − 1)
2!
x
2
+
α(α − 1)(α − 2)
3!
x
3
+ . . . .
Rothe-Hagen identity
2
(good for all complex x, y, z except when singular):
n

k=0

x
x + kz

x + kz
k

y
y + (n − k)z

y + (n − k)z
n − k

=
x + y
x + y + nz

x + y + nz
n

.
Newberger’s summation formula
3
[good for µ nonintegral, Re (α + β) > −1]:


n=−∞
(−1)
n
J
α−γn

(z)J
β+γn
(z)
n + µ
=
π
sin µπ
J
α+γµ
(z)J
β−γµ
(z).
4
VECTOR IDENTITIES
4
Notation: f, g, are scalars; A, B, etc., are vectors; T is a tensor; I is the unit
dyad.
(1) A ·B ×C = A ×B·C = B ·C ×A = B×C ·A = C ·A ×B = C ×A·B
(2) A × (B × C) = (C × B) × A = (A · C)B − (A · B)C
(3) A × (B × C) + B × (C × A) + C × (A × B) = 0
(4) (A × B) · (C × D) = (A · C)(B · D) − (A · D)(B · C)
(5) (A × B) × (C × D) = (A × B · D)C − (A × B · C)D
(6) ∇(fg) = ∇(gf) = f∇g + g∇f
(7) ∇ · (fA) = f ∇ · A + A · ∇f
(8) ∇ × (fA) = f∇ × A + ∇f × A
(9) ∇ · (A × B) = B · ∇ × A − A · ∇ × B
(10) ∇ × (A × B) = A(∇ · B) − B(∇ · A) + (B · ∇)A − (A · ∇)B
(11) A × (∇ × B) = (∇B) · A − (A · ∇)B
(12) ∇(A · B) = A × (∇ × B) + B × (∇ × A) + (A · ∇)B + (B · ∇)A
(13) ∇

2
f = ∇ · ∇f
(14) ∇
2
A = ∇(∇ · A) − ∇ × ∇ × A
(15) ∇ × ∇f = 0
(16) ∇ · ∇ × A = 0
If e
1
, e
2
, e
3
are orthonormal unit vectors, a second-order tensor T can be
written in the dyadic form
(17) T =

i,j
T
ij
e
i
e
j
In cartesian coordinates the divergence of a tensor is a vector with components
(18) (∇·T )
i
=

j

(∂T
ji
/∂x
j
)
[This definition is required for consistency with Eq. (29)]. In general
(19) ∇ · (AB) = (∇ · A)B + (A · ∇)B
(20) ∇ · (fT ) = ∇f·T +f∇·T
5
Let r = ix + jy + kz be the radius vector of magnitude r, from the origin to
the point x, y, z. Then
(21) ∇ · r = 3
(22) ∇ × r = 0
(23) ∇r = r/r
(24) ∇(1/r) = −r/r
3
(25) ∇ · (r/r
3
) = 4πδ(r)
(26) ∇r = I
If V is a volume enclosed by a surface S and dS = ndS, where n is the unit
normal outward from V,
(27)

V
dV ∇f =

S
dSf
(28)


V
dV ∇ · A =

S
dS · A
(29)

V
dV ∇·T =

S
dS ·T
(30)

V
dV ∇ × A =

S
dS × A
(31)

V
dV (f∇
2
g − g∇
2
f) =

S

dS · (f∇g − g∇f)
(32)

V
dV (A · ∇ × ∇ × B − B · ∇ × ∇ × A)
=

S
dS · (B × ∇ × A − A × ∇ × B)
If S is an open surface bounded by the contour C, of which the line element is
dl,
(33)

S
dS × ∇f =

C
dlf
6
(34)

S
dS · ∇ × A =

C
dl · A
(35)

S
(dS × ∇) × A =


C
dl × A
(36)

S
dS · (∇f × ∇g) =

C
fdg = −

C
gdf
DIFFERENTIAL OPERATORS IN
CURVILINEAR COORDINATES
5
Cylindrical Coordinates
Divergence
∇ · A =
1
r

∂r
(rA
r
) +
1
r
∂A
φ

∂φ
+
∂A
z
∂z
Gradient
(∇f)
r
=
∂f
∂r
; (∇f)
φ
=
1
r
∂f
∂φ
; (∇f)
z
=
∂f
∂z
Curl
(∇ × A)
r
=
1
r
∂A

z
∂φ

∂A
φ
∂z
(∇ × A)
φ
=
∂A
r
∂z

∂A
z
∂r
(∇ × A)
z
=
1
r

∂r
(rA
φ
) −
1
r
∂A
r

∂φ
Laplacian

2
f =
1
r

∂r

r
∂f
∂r

+
1
r
2

2
f
∂φ
2
+

2
f
∂z
2
7

Laplacian of a vector
(∇
2
A)
r
= ∇
2
A
r

2
r
2
∂A
φ
∂φ

A
r
r
2
(∇
2
A)
φ
= ∇
2
A
φ
+

2
r
2
∂A
r
∂φ

A
φ
r
2
(∇
2
A)
z
= ∇
2
A
z
Components of (A · ∇)B
(A · ∇B)
r
= A
r
∂B
r
∂r
+
A
φ

r
∂B
r
∂φ
+ A
z
∂B
r
∂z

A
φ
B
φ
r
(A · ∇B)
φ
= A
r
∂B
φ
∂r
+
A
φ
r
∂B
φ
∂φ
+ A

z
∂B
φ
∂z
+
A
φ
B
r
r
(A · ∇B)
z
= A
r
∂B
z
∂r
+
A
φ
r
∂B
z
∂φ
+ A
z
∂B
z
∂z
Divergence of a tensor

(∇ · T )
r
=
1
r

∂r
(rT
rr
) +
1
r
∂T
φr
∂φ
+
∂T
zr
∂z

T
φφ
r
(∇ · T )
φ
=
1
r

∂r

(rT

) +
1
r
∂T
φφ
∂φ
+
∂T

∂z
+
T
φr
r
(∇ · T )
z
=
1
r

∂r
(rT
rz
) +
1
r
∂T
φz

∂φ
+
∂T
zz
∂z
8
Spherical Coordinates
Divergence
∇ · A =
1
r
2

∂r
(r
2
A
r
) +
1
r sin θ

∂θ
(sin θA
θ
) +
1
r sin θ
∂A
φ

∂φ
Gradient
(∇f)
r
=
∂f
∂r
; (∇f)
θ
=
1
r
∂f
∂θ
; (∇f)
φ
=
1
r sin θ
∂f
∂φ
Curl
(∇ × A)
r
=
1
r sin θ

∂θ
(sin θA

φ
) −
1
r sin θ
∂A
θ
∂φ
(∇ × A)
θ
=
1
r sin θ
∂A
r
∂φ

1
r

∂r
(rA
φ
)
(∇ × A)
φ
=
1
r

∂r

(rA
θ
) −
1
r
∂A
r
∂θ
Laplacian

2
f =
1
r
2

∂r

r
2
∂f
∂r

+
1
r
2
sin θ

∂θ


sin θ
∂f
∂θ

+
1
r
2
sin
2
θ

2
f
∂φ
2
Laplacian of a vector
(∇
2
A)
r
= ∇
2
A
r

2A
r
r

2

2
r
2
∂A
θ
∂θ

2 cot θA
θ
r
2

2
r
2
sin θ
∂A
φ
∂φ
(∇
2
A)
θ
= ∇
2
A
θ
+

2
r
2
∂A
r
∂θ

A
θ
r
2
sin
2
θ

2 cos θ
r
2
sin
2
θ
∂A
φ
∂φ
(∇
2
A)
φ
= ∇
2

A
φ

A
φ
r
2
sin
2
θ
+
2
r
2
sin θ
∂A
r
∂φ
+
2 cos θ
r
2
sin
2
θ
∂A
θ
∂φ
9
Components of (A · ∇)B

(A · ∇B)
r
= A
r
∂B
r
∂r
+
A
θ
r
∂B
r
∂θ
+
A
φ
r sin θ
∂B
r
∂φ

A
θ
B
θ
+ A
φ
B
φ

r
(A · ∇B)
θ
= A
r
∂B
θ
∂r
+
A
θ
r
∂B
θ
∂θ
+
A
φ
r sin θ
∂B
θ
∂φ
+
A
θ
B
r
r

cot θA

φ
B
φ
r
(A · ∇B)
φ
= A
r
∂B
φ
∂r
+
A
θ
r
∂B
φ
∂θ
+
A
φ
r sin θ
∂B
φ
∂φ
+
A
φ
B
r

r
+
cot θA
φ
B
θ
r
Divergence of a tensor
(∇ · T )
r
=
1
r
2

∂r
(r
2
T
rr
) +
1
r sin θ

∂θ
(sin θT
θr
)
+
1

r sin θ
∂T
φr
∂φ

T
θθ
+ T
φφ
r
(∇ · T )
θ
=
1
r
2

∂r
(r
2
T

) +
1
r sin θ

∂θ
(sin θT
θθ
)

+
1
r sin θ
∂T
φθ
∂φ
+
T
θr
r

cot θT
φφ
r
(∇ · T )
φ
=
1
r
2

∂r
(r
2
T

) +
1
r sin θ


∂θ
(sin θT
θφ
)
+
1
r sin θ
∂T
φφ
∂φ
+
T
φr
r
+
cot θT
φθ
r
10
DIMENSIONS AND UNITS
To get the value of a quantity in Gaussian units, multiply the value ex-
pressed in SI units by the conversion factor. Multiples of 3 in the conversion
factors result from approximating the speed of light c = 2.9979 × 10
10
cm/sec
≈ 3 × 10
10
cm/sec.
Dimensions
Physical Sym- SI Conversion Gaussian

Quantity bol SI Gaussian Units Factor Units
Capacitance C
t
2
q
2
ml
2
l farad 9 × 10
11
cm
Charge q q
m
1/2
l
3/2
t
coulomb 3 × 10
9
statcoulomb
Charge ρ
q
l
3
m
1/2
l
3/2
t
coulomb 3 × 10

3
statcoulomb
density /m
3
/cm
3
Conductance
tq
2
ml
2
l
t
siemens 9 × 10
11
cm/sec
Conductivity σ
tq
2
ml
3
1
t
siemens 9 × 10
9
sec
−1
/m
Current I, i
q

t
m
1/2
l
3/2
t
2
ampere 3 × 10
9
statampere
Current J, j
q
l
2
t
m
1/2
l
1/2
t
2
ampere 3 × 10
5
statampere
density /m
2
/cm
2
Density ρ
m

l
3
m
l
3
kg/m
3
10
−3
g/cm
3
Displacement D
q
l
2
m
1/2
l
1/2
t
coulomb 12π × 10
5
statcoulomb
/m
2
/cm
2
Electric field E
ml
t

2
q
m
1/2
l
1/2
t
volt/m
1
3
× 10
−4
statvolt/cm
Electro- E,
ml
2
t
2
q
m
1/2
l
1/2
t
volt
1
3
× 10
−2
statvolt

motance Emf
Energy U, W
ml
2
t
2
ml
2
t
2
joule 10
7
erg
Energy w, 
m
lt
2
m
lt
2
joule/m
3
10 erg/cm
3
density
11
Dimensions
Physical Sym- SI Conversion Gaussian
Quantity bol SI Gaussian Units Factor Units
Force F

ml
t
2
ml
t
2
newton 10
5
dyne
Frequency f, ν
1
t
1
t
hertz 1 hertz
Impedance Z
ml
2
tq
2
t
l
ohm
1
9
× 10
−11
sec/cm
Inductance L
ml

2
q
2
t
2
l
henry
1
9
× 10
−11
sec
2
/cm
Length l l l meter (m) 10
2
centimeter
(cm)
Magnetic H
q
lt
m
1/2
l
1/2
t
ampere– 4π × 10
−3
oersted
intensity turn/m

Magnetic flux Φ
ml
2
tq
m
1/2
l
3/2
t
weber 10
8
maxwell
Magnetic B
m
tq
m
1/2
l
1/2
t
tesla 10
4
gauss
induction
Magnetic m, µ
l
2
q
t
m

1/2
l
5/2
t
ampere–m
2
10
3
oersted–
moment cm
3
Magnetization M
q
lt
m
1/2
l
1/2
t
ampere– 4π × 10
−3
oersted
turn/m
Magneto- M,
q
t
m
1/2
l
1/2

t
2
ampere–

10
gilbert
motance Mmf turn
Mass m, M m m kilogram 10
3
gram (g)
(kg)
Momentum p, P
ml
t
ml
t
kg–m/s 10
5
g–cm/sec
Momentum
m
l
2
t
m
l
2
t
kg/m
2

–s 10
−1
g/cm
2
–sec
density
Permeability µ
ml
q
2
1 henry/m
1

× 10
7

12
Dimensions
Physical Sym- SI Conversion Gaussian
Quantity bol SI Gaussian Units Factor Units
Permittivity 
t
2
q
2
ml
3
1 farad/m 36π × 10
9


Polarization P
q
l
2
m
1/2
l
1/2
t
coulomb/m
2
3 × 10
5
statcoulomb
/cm
2
Potential V, φ
ml
2
t
2
q
m
1/2
l
1/2
t
volt
1
3

× 10
−2
statvolt
Power P
ml
2
t
3
ml
2
t
3
watt 10
7
erg/sec
Power
m
lt
3
m
lt
3
watt/m
3
10 erg/cm
3
–sec
density
Pressure p, P
m

lt
2
m
lt
2
pascal 10 dyne/cm
2
Reluctance R
q
2
ml
2
1
l
ampere–turn 4π × 10
−9
cm
−1
/weber
Resistance R
ml
2
tq
2
t
l
ohm
1
9
× 10

−11
sec/cm
Resistivity η, ρ
ml
3
tq
2
t ohm–m
1
9
× 10
−9
sec
Thermal con- κ, k
ml
t
3
ml
t
3
watt/m– 10
5
erg/cm–sec–
ductivity deg (K) deg (K)
Time t t t second (s) 1 second (sec)
Vector A
ml
tq
m
1/2

l
1/2
t
weber/m 10
6
gauss–cm
potential
Velocity v
l
t
l
t
m/s 10
2
cm/sec
Viscosity η, µ
m
lt
m
lt
kg/m–s 10 poise
Vorticity ζ
1
t
1
t
s
−1
1 sec
−1

Work W
ml
2
t
2
ml
2
t
2
joule 10
7
erg
13
INTERNATIONAL SYSTEM (SI) NOMENCLATURE
6
Physical Name Symbol Physical Name Symbol
Quantity of Unit for Unit Quantity of Unit for Unit
*length meter m electric volt V
potential
*mass kilogram kg
electric ohm Ω
*time second s resistance
*current ampere A electric siemens S
conductance
*temperature kelvin K
electric farad F
*amount of mole mol capacitance
substance
magnetic flux weber Wb
*luminous candela cd

intensity magnetic henry H
inductance
†plane angle radian rad
magnetic tesla T
†solid angle steradian sr intensity
frequency hertz Hz luminous flux lumen lm
energy joule J illuminance lux lx
force newton N activity (of a becquerel Bq
radioactive
pressure pascal Pa source)
power watt W absorbed dose gray Gy
(of ionizing
electric charge coulomb C radiation)
*SI base unit †Supplementary unit
METRIC PREFIXES
Multiple Prefix Symbol Multiple Prefix Symbol
10
−1
deci d 10 deca da
10
−2
centi c 10
2
hecto h
10
−3
milli m 10
3
kilo k
10

−6
micro µ 10
6
mega M
10
−9
nano n 10
9
giga G
10
−12
pico p 10
12
tera T
10
−15
femto f 10
15
peta P
10
−18
atto a 10
18
exa E
14
PHYSICAL CONSTANTS (SI)
7
Physical Quantity Symbol Value Units
Boltzmann constant k 1.3807 × 10
−23

J K
−1
Elementary charge e 1.6022 × 10
−19
C
Electron mass m
e
9.1094 × 10
−31
kg
Proton mass m
p
1.6726 × 10
−27
kg
Gravitational constant G 6.6726 × 10
−11
m
3
s
−2
kg
−1
Planck constant h 6.6261 × 10
−34
J s
¯h = h/2π 1.0546 × 10
−34
J s
Speed of light in vacuum c 2.9979 × 10

8
m s
−1
Permittivity of 
0
8.8542 × 10
−12
F m
−1
free space
Permeability of µ
0
4π × 10
−7
H m
−1
free space
Proton/electron mass m
p
/m
e
1.8362 × 10
3
ratio
Electron charge/mass e/m
e
1.7588 × 10
11
C kg
−1

ratio
Rydberg constant R

=
me
4
8
0
2
ch
3
1.0974 × 10
7
m
−1
Bohr radius a
0
= 
0
h
2
/πme
2
5.2918 × 10
−11
m
Atomic cross section πa
0
2
8.7974 × 10

−21
m
2
Classical electron radius r
e
= e
2
/4π
0
mc
2
2.8179 × 10
−15
m
Thomson cross section (8π/3)r
e
2
6.6525 × 10
−29
m
2
Compton wavelength of h/m
e
c 2.4263 × 10
−12
m
electron ¯h/m
e
c 3.8616 × 10
−13

m
Fine-structure constant α = e
2
/2
0
hc 7.2974 × 10
−3
α
−1
137.04
First radiation constant c
1
= 2πhc
2
3.7418 × 10
−16
W m
2
Second radiation c
2
= hc/k 1.4388 × 10
−2
m K
constant
Stefan-Boltzmann σ 5.6705 × 10
−8
W m
−2
K
−4

constant
15
Physical Quantity Symbol Value Units
Wavelength associated λ
0
= hc/e 1.2398 × 10
−6
m
with 1 eV
Frequency associated ν
0
= e/h 2.4180 × 10
14
Hz
with 1 eV
Wave number associated k
0
= e/hc 8.0655 × 10
5
m
−1
with 1 eV
Energy associated with hν
0
1.6022 × 10
−19
J
1 eV
Energy associated with hc 1.9864 × 10
−25

J
1 m
−1
Energy associated with me
3
/8
0
2
h
2
13.606 eV
1 Rydberg
Energy associated with k/e 8.6174 × 10
−5
eV
1 Kelvin
Temperature associated e/k 1.1604 × 10
4
K
with 1 eV
Avogadro number N
A
6.0221 × 10
23
mol
−1
Faraday constant F = N
A
e 9.6485 × 10
4

C mol
−1
Gas constant R = N
A
k 8.3145 J K
−1
mol
−1
Loschmidt’s number n
0
2.6868 × 10
25
m
−3
(no. density at STP)
Atomic mass unit m
u
1.6605 × 10
−27
kg
Standard temperature T
0
273.15 K
Atmospheric pressure p
0
= n
0
kT
0
1.0133 × 10

5
Pa
Pressure of 1 mm Hg 1.3332 × 10
2
Pa
(1 torr)
Molar volume at STP V
0
= RT
0
/p
0
2.2414 × 10
−2
m
3
Molar weight of air M
air
2.8971 × 10
−2
kg
calorie (cal) 4.1868 J
Gravitational g 9.8067 m s
−2
acceleration
16
PHYSICAL CONSTANTS (cgs)
7
Physical Quantity Symbol Value Units
Boltzmann constant k 1.3807 × 10

−16
erg/deg (K)
Elementary charge e 4.8032 × 10
−10
statcoulomb
(statcoul)
Electron mass m
e
9.1094 × 10
−28
g
Proton mass m
p
1.6726 × 10
−24
g
Gravitational constant G 6.6726 × 10
−8
dyne-cm
2
/g
2
Planck constant h 6.6261 × 10
−27
erg-sec
¯h = h/2π 1.0546 × 10
−27
erg-sec
Speed of light in vacuum c 2.9979 × 10
10

cm/sec
Proton/electron mass m
p
/m
e
1.8362 × 10
3
ratio
Electron charge/mass e/m
e
5.2728 × 10
17
statcoul/g
ratio
Rydberg constant R

=

2
me
4
ch
3
1.0974 × 10
5
cm
−1
Bohr radius a
0
= ¯h

2
/me
2
5.2918 × 10
−9
cm
Atomic cross section πa
0
2
8.7974 × 10
−17
cm
2
Classical electron radius r
e
= e
2
/mc
2
2.8179 × 10
−13
cm
Thomson cross section (8π/3)r
e
2
6.6525 × 10
−25
cm
2
Compton wavelength of h/m

e
c 2.4263 × 10
−10
cm
electron ¯h/m
e
c 3.8616 × 10
−11
cm
Fine-structure constant α = e
2
/¯hc 7.2974 × 10
−3
α
−1
137.04
First radiation constant c
1
= 2πhc
2
3.7418 × 10
−5
erg-cm
2
/sec
Second radiation c
2
= hc/k 1.4388 cm-deg (K)
constant
Stefan-Boltzmann σ 5.6705 × 10

−5
erg/cm
2
-
constant sec-deg
4
Wavelength associated λ
0
1.2398 × 10
−4
cm
with 1 eV
17
Physical Quantity Symbol Value Units
Frequency associated ν
0
2.4180 × 10
14
Hz
with 1 eV
Wave number associated k
0
8.0655 × 10
3
cm
−1
with 1 eV
Energy associated with 1.6022 × 10
−12
erg

1 eV
Energy associated with 1.9864 × 10
−16
erg
1 cm
−1
Energy associated with 13.606 eV
1 Rydberg
Energy associated with 8.6174 × 10
−5
eV
1 deg Kelvin
Temperature associated 1.1604 × 10
4
deg (K)
with 1 eV
Avogadro number N
A
6.0221 × 10
23
mol
−1
Faraday constant F = N
A
e 2.8925 × 10
14
statcoul/mol
Gas constant R = N
A
k 8.3145 × 10

7
erg/deg-mol
Loschmidt’s number n
0
2.6868 × 10
19
cm
−3
(no. density at STP)
Atomic mass unit m
u
1.6605 × 10
−24
g
Standard temperature T
0
273.15 deg (K)
Atmospheric pressure p
0
= n
0
kT
0
1.0133 × 10
6
dyne/cm
2
Pressure of 1 mm Hg 1.3332 × 10
3
dyne/cm

2
(1 torr)
Molar volume at STP V
0
= RT
0
/p
0
2.2414 × 10
4
cm
3
Molar weight of air M
air
28.971 g
calorie (cal) 4.1868 × 10
7
erg
Gravitational g 980.67 cm/sec
2
acceleration
18
FORMULA CONVERSION
8
Here α = 10
2
cm m
−1
, β = 10
7

erg J
−1
, 
0
= 8.8542 × 10
−12
F m
−1
,
µ
0
= 4π×10
−7
H m
−1
, c = (
0
µ
0
)
−1/2
= 2.9979×10
8
m s
−1
, and ¯h = 1.0546×
10
−34
J s. To derive a dimensionally correct SI formula from one expressed in
Gaussian units, substitute for each quantity according to

¯
Q =
¯
kQ, where
¯
k is
the coefficient in the second column of the table corresponding to Q (overbars
denote variables expressed in Gaussian units). Thus, the formula ¯a
0
=
¯
¯h
2
/ ¯m¯e
2
for the Bohr radius becomes αa
0
= (¯hβ)
2
/[(mβ/α
2
)(e
2
αβ/4π
0
)], or a
0
=

0

h
2
/πme
2
. To go from SI to natural units in which ¯h = c = 1 (distinguished
by a circumflex), use Q =
ˆ
k
−1
ˆ
Q, where
ˆ
k is the coefficient corresponding to
Q in the third column. Thus ˆa
0
= 4π
0
¯h
2
/[( ˆm¯h/c)(ˆe
2

0
¯hc)] = 4π/ ˆm ˆe
2
. (In
transforming from SI units, do not substitute for 
0
, µ
0

, or c.)
Physical Quantity Gaussian Units to SI Natural Units to SI
Capacitance α/4π
0

0
−1
Charge (αβ/4π
0
)
1/2
(
0
¯hc)
−1/2
Charge density (β/4πα
5

0
)
1/2
(
0
¯hc)
−1/2
Current (αβ/4π
0
)
1/2


0
/¯hc)
1/2
Current density (β/4πα
3

0
)
1/2

0
/¯hc)
1/2
Electric field (4πβ
0

3
)
1/2
(
0
/¯hc)
1/2
Electric potential (4πβ
0
/α)
1/2
(
0
/¯hc)

1/2
Electric conductivity (4π
0
)
−1

0
−1
Energy β (¯hc)
−1
Energy density β/α
3
(¯hc)
−1
Force β/α (¯hc)
−1
Frequency 1 c
−1
Inductance 4π
0
/α µ
0
−1
Length α 1
Magnetic induction (4πβ/α
3
µ
0
)
1/2


0
¯hc)
−1/2
Magnetic intensity (4πµ
0
β/α
3
)
1/2

0
/¯hc)
1/2
Mass β/α
2
c/¯h
Momentum β/α ¯h
−1
Power β (¯hc
2
)
−1
Pressure β/α
3
(¯hc)
−1
Resistance 4π
0
/α (

0

0
)
1/2
Time 1 c
Velocity α c
−1
19
MAXWELL’S EQUATIONS
Name or Description SI Gaussian
Faraday’s law ∇ × E = −
∂B
∂t
∇ × E = −
1
c
∂B
∂t
Ampere’s law ∇ × H =
∂D
∂t
+ J
∇ × H =
1
c
∂D
∂t
+


c
J
Poisson equation ∇ · D = ρ ∇ · D = 4πρ
[Absence of magnetic ∇ · B = 0 ∇ · B = 0
monopoles]
Lorentz force on q (E + v × B) q

E +
1
c
v × B

charge q
Constitutive D = E D = E
relations B = µH B = µH
In a plasma, µ ≈ µ
0
= 4π × 10
−7
H m
−1
(Gaussian units: µ ≈ 1). The
permittivity satisfies  ≈ 
0
= 8.8542 × 10
−12
F m
−1
(Gaussian:  ≈ 1)
provided that all charge is regarded as free. Using the drift approximation

v

= E × B/B
2
to calculate polarization charge density gives rise to a dielec-
tric constant K ≡ /
0
= 1 + 36π ×10
9
ρ/B
2
(SI) = 1 +4πρc
2
/B
2
(Gaussian),
where ρ is the mass density.
The electromagnetic energy in volume V is given by
W =
1
2

V
dV (H · B + E · D) (SI)
=
1


V
dV (H · B + E · D) (Gaussian).

Poynting’s theorem is
∂W
∂t
+

S
N · dS = −

V
dV J · E,
where S is the closed surface bounding V and the Poynting vector (energy flux
across S) is given by N = E × H (SI) or N = cE × H/4π (Gaussian).
20
ELECTRICITY AND MAGNETISM
In the following,  = dielectric permittivity, µ = permeability of conduc-
tor, µ

= permeability of surrounding medium, σ = conductivity, f = ω/2π =
radiation frequency, κ
m
= µ/µ
0
and κ
e
= /
0
. Where subscripts are used,
‘1’ denotes a conducting medium and ‘2’ a propagating (lossless dielectric)
medium. All units are SI unless otherwise specified.
Permittivity of free space 

0
= 8.8542 × 10
−12
F m
−1
Permeability of free space µ
0
= 4π × 10
−7
H m
−1
= 1.2566 × 10
−6
H m
−1
Resistance of free space R
0
= (µ
0
/
0
)
1/2
= 376.73 Ω
Capacity of parallel plates of area C = A/d
A, separated by distance d
Capacity of concentric cylinders C = 2πl/ ln(b/a)
of length l, radii a, b
Capacity of concentric spheres of C = 4πab/(b − a)
radii a, b

Self-inductance of wire of length L = µl
l, carrying uniform current
Mutual inductance of parallel wires L = (µ

l/4π) [1 + 4 ln(d/a)]
of length l, radius a, separated
by distance d
Inductance of circular loop of radius L = b

µ

[ln(8b/a) − 2] + µ/4

b, made of wire of radius a,
carrying uniform current
Relaxation time in a lossy medium τ = /σ
Skin depth in a lossy medium δ = (2/ωµσ)
1/2
= (πfµσ)
−1/2
Wave impedance in a lossy medium Z = [µ/( + iσ/ω)]
1/2
Transmission coefficient at T = 4.22 × 10
−4
(fκ
m1
κ
e2
/σ)
1/2

conducting surface
9
(good only for T  1)
Field at distance r from straight wire B
θ
= µI/2πr tesla
carrying current I (amperes) = 0.2I/r gauss (r in cm)
Field at distance z along axis from B
z
= µa
2
I/[2(a
2
+ z
2
)
3/2
]
circular loop of radius a
carrying current I
21
ELECTROMAGNETIC FREQUENCY/
WAVELENGTH BANDS
10
Frequency Range Wavelength Range
Designation
Lower Upper Lower Upper
ULF* 30 Hz 10 Mm
VF* 30 Hz 300 Hz 1 Mm 10 Mm
ELF 300 Hz 3 kHz 100 km 1 Mm

VLF 3 kHz 30 kHz 10 km 100 km
LF 30 kHz 300 kHz 1 km 10 km
MF 300 kHz 3 MHz 100 m 1 km
HF 3 MHz 30 MHz 10 m 100 m
VHF 30 MHz 300 MHz 1 m 10 m
UHF 300 MHz 3 GHz 10 cm 1 m
SHF† 3 GHz 30 GHz 1 cm 10 cm
S 2.6 3.95 7.6 11.5
G 3.95 5.85 5.1 7.6
J 5.3 8.2 3.7 5.7
H 7.05 10.0 3.0 4.25
X 8.2 12.4 2.4 3.7
M 10.0 15.0 2.0 3.0
P 12.4 18.0 1.67 2.4
K 18.0 26.5 1.1 1.67
R 26.5 40.0 0.75 1.1
EHF 30 GHz 300 GHz 1 mm 1 cm
Submillimeter 300 GHz 3 THz 100 µm 1 mm
Infrared 3 THz 430 THz 700 nm 100 µm
Visible 430 THz 750 THz 400 nm 700 nm
Ultraviolet 750 THz 30 PHz 10 nm 400 nm
X Ray 30 PHz 3 EHz 100 pm 10 nm
Gamma Ray 3 EHz 100 pm
In spectroscopy the angstrom is sometimes used (1
˚
A = 10
−8
cm = 0.1 nm).
*The boundary between ULF and VF (voice frequencies) is variously defined.
†The SHF (microwave) band is further subdivided approximately as shown.

11
22
AC CIRCUITS
For a resistance R, inductance L, and capacitance C in series with
a voltage source V = V
0
exp(iωt) (here i =

−1), the current is given
by I = dq/dt, where q satisfies
L
d
2
q
dt
2
+ R
dq
dt
+
q
C
= V.
Solutions are q(t) = q
s
+ q
t
, I(t) = I
s
+ I

t
, where the steady state is
I
s
= iωq
s
= V/Z in terms of the impedance Z = R + i(ωL − 1/ωC) and
I
t
= dq
t
/dt. For initial conditions q(0) ≡ q
0
= ¯q
0
+ q
s
, I(0) ≡ I
0
, the
transients can be of three types, depending on ∆ = R
2
− 4L/C:
(a) Overdamped, ∆ > 0
q
t
=
I
0
+ γ

+
¯q
0
γ
+
− γ

exp(−γ

t) −
I
0
+ γ

¯q
0
γ
+
− γ

exp(−γ
+
t),
I
t
=
γ
+
(I
0

+ γ

¯q
0
)
γ
+
− γ

exp(−γ
+
t) −
γ

(I
0
+ γ
+
¯q
0
)
γ
+
− γ

exp(−γ

t),
where γ
±

= (R ± ∆
1/2
)/2L;
(b) Critically damped, ∆ = 0
q
t
= [¯q
0
+ (I
0
+ γ
R
¯q
0
)t] exp(−γ
R
t),
I
t
= [I
0
− (I
0
+ γ
R
¯q
0

R
t] exp(−γ

R
t),
where γ
R
= R/2L;
(c) Underdamped, ∆ < 0
q
t
=

γ
R
¯q
0
+ I
0
ω
1
sin ω
1
t + ¯q
0
cos ω
1
t

exp(−γ
R
t),
I

t
=

I
0
cos ω
1
t −

1
2
+ γ
R
2
)¯q
0
+ γ
R
I
0
ω
1
sin(ω
1
t)

exp(−γ
R
t),
Here ω

1
= ω
0
(1 − R
2
C/4L)
1/2
, where ω
0
= (LC)
−1/2
is the resonant
frequency. At ω = ω
0
, Z = R. The quality of the circuit is Q = ω
0
L/R.
Instability results when L, R, C are not all of the same sign.
23
DIMENSIONLESS NUMBERS OF FLUID MECHANICS
12
Name(s) Symbol Definition Significance
Alfv´en, Al, Ka V
A
/V *(Magnetic force/
K´arm´an inertial force)
1/2
Bond Bd (ρ

− ρ)L

2
g/Σ Gravitational force/
surface tension
Boussinesq B V/(2gR)
1/2
(Inertial force/
gravitational force)
1/2
Brinkman Br µV
2
/k∆T Viscous heat/conducted heat
Capillary Cp µV/Σ Viscous force/surface tension
Carnot Ca (T
2
− T
1
)/T
2
Theoretical Carnot cycle
efficiency
Cauchy, Cy, Hk ρV
2
/Γ = M
2
Inertial force/
Hooke compressibility force
Chandra- Ch B
2
L
2

/ρνη Magnetic force/dissipative
sekhar forces
Clausius Cl LV
3
ρ/k∆T Kinetic energy flow rate/heat
conduction rate
Cowling C (V
A
/V )
2
= Al
2
Magnetic force/inertial force
Crispation Cr µκ/ΣL Effect of diffusion/effect of
surface tension
Dean D D
3/2
V/ν(2r)
1/2
Transverse flow due to
curvature/longitudinal flow
[Drag C
D


− ρ)Lg/ Drag force/inertial force
coefficient] ρ

V
2

Eckert E V
2
/c
p
∆T Kinetic energy/change in
thermal energy
Ekman Ek (ν/2ΩL
2
)
1/2
= (Viscous force/Coriolis force)
1/2
(Ro/Re)
1/2
Euler Eu ∆p/ρV
2
Pressure drop due to friction/
dynamic pressure
Froude Fr V/(gL)
1/2
†(Inertial force/gravitational or
V/NL buoyancy force)
1/2
Gay–Lussac Ga 1/β∆T Inverse of relative change in
volume during heating
Grashof Gr gL
3
β∆T /ν
2
Buoyancy force/viscous force

[Hall C
H
λ/r
L
Gyrofrequency/
coefficient] collision frequency
*(†) Also defined as the inverse (square) of the quantity shown.
24
Name(s) Symbol Definition Significance
Hartmann H BL/(µη)
1/2
= (Magnetic force/
(Rm Re C)
1/2
dissipative force)
1/2
Knudsen Kn λ/L Hydrodynamic time/
collision time
Lewis Le κ/D *Thermal conduction/molecular
diffusion
Lorentz Lo V/c Magnitude of relativistic effects
Lundquist Lu µ
0
LV
A
/η = J × B force/resistive magnetic
Al Rm diffusion force
Mach M V/C
S
Magnitude of compressibility

effects
Magnetic Mm V/V
A
= Al
−1
(Inertial force/magnetic force)
1/2
Mach
Magnetic Rm µ
0
LV/η Flow velocity/magnetic diffusion
Reynolds velocity
Newton Nt F/ρL
2
V
2
Imposed force/inertial force
Nusselt N αL/k Total heat transfer/thermal
conduction
P´eclet Pe LV /κ Heat convection/heat conduction
Poisseuille Po D
2
∆p/µLV Pressure force/viscous force
Prandtl Pr ν/κ Momentum diffusion/
heat diffusion
Rayleigh Ra gH
3
β∆T /νκ Buoyancy force/diffusion force
Reynolds Re LV/ν Inertial force/viscous force
Richardson Ri (N H/∆V )

2
Buoyancy effects/
vertical shear effects
Rossby Ro V /2ΩL sin Λ Inertial force/Coriolis force
Schmidt Sc ν/D Momentum diffusion/
molecular diffusion
Stanton St α/ρc
p
V Thermal conduction loss/
heat capacity
Stefan Sf σLT
3
/k Radiated heat/conducted heat
Stokes S ν/L
2
f Viscous damping rate/
vibration frequency
Strouhal Sr fL/V Vibration speed/flow velocity
Taylor Ta (2ΩL
2
/ν)
2
Centrifugal force/viscous force
R
1/2
(∆R)
3/2
(Centrifugal force/
·(Ω/ν) viscous force)
1/2

Thring, Th, Bo ρc
p
V/σT
3
Convective heat transport/
Boltzmann radiative heat transport
Weber W ρLV
2
/Σ Inertial force/surface tension
25

×