Free LATEX
BÀI TẬP TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1. Cho z là nghiệm của phương trình √x2 + x + 1 = 0. Tính P = √
z4 + 2z3 − z
−1 − i 3
−1 + i 3
A. P = 2i.
B. P =
.
C. P =
.
D. P = 2.
2
2
Câu 2. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = [2; 1].
B. D = R.
2
C. D = R \ {1; 2}.
D. D = (−2; 1).
√
Câu 3. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là
√
√
√
a3 3
a3 3
a3
3
.
B. a 3.
C.
.
D.
.
A.
4
12
3
Câu 4. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy
(ABC) một góc bằng 60◦ . Thể tích√khối chóp S .ABC là
√
√
a3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
4
8
4
12
Câu 5. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. (−∞; +∞).
B. [−1; 2).
C. [1; 2].
D. (1; 2).
3
2
x
Câu 6. [2] Tìm
√ hàm số y = 2x + (m + 1)2 trên [0; 1] bằng 8
√ m để giá trị lớn nhất của
A. m = ± 3.
B. m = ± 2.
C. m = ±3.
D. m = ±1.
Câu 7. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu không rút
tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng
tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đơi số tiền gửi ban đầu, giả
định trong thời gian này lãi suất khơng đổi và người đó khơng rút tiền ra?
A. 10 năm.
B. 13 năm.
C. 12 năm.
D. 11 năm.
Câu 8. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 4}.
B. {4; 3}.
C. {5; 3}.
D. {3; 5}.
Câu 9. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B
√
√ C là
3
a3
a3 3
a 3
A.
.
B.
.
C.
.
D. a3 .
2
3
6
π
Câu 10. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2
√
√
2 π4
1 π3
3 π6
A.
e .
B. e .
C. 1.
D.
e .
2
2
2
!
!
!
4x
1
2
2016
Câu 11. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T =
.
B. T = 1008.
C. T = 2016.
D. T = 2017.
2017
Câu 12. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 4.
B. 0, 2.
C. 0, 3.
D. 0, 5.
Câu 13. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
Trang 1/10 Mã đề 1
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 1.
B. 0.
C. 2.
D. 3.
Câu 14. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
2n + 1
Câu 15. Tính giới hạn lim
3n + 2
2
3
1
A. 0.
B. .
C. .
D. .
3
2
2
2
2
2
1 + 2 + ··· + n
Câu 16. [3-1133d] Tính lim
n3
1
2
A. 0.
B. .
C. +∞.
D. .
3
3
n−1
Câu 17. Tính lim 2
n +2
A. 1.
B. 3.
C. 2.
D. 0.
Câu 18. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 1.
B. 22016 .
C. e2016 .
D. 0.
Câu 19.! Dãy số nào sau đây có giới
!n hạn là 0?
n
1
4
A.
.
B.
.
3
e
√
Câu 20. [1] Biết log6 a = 2 thì log6 a bằng
A. 36.
B. 4.
Câu 21. Phần thực và √
phần ảo của số phức
√ z=
A. Phần thực là 1√− 2, phần ảo là −√ 3.
C. Phần thực là 2 − 1, phần ảo là 3.
!n
5
C.
.
3
√
!n
5
D. − .
3
C. 108.
D. 6.
√
2 − 1 − 3i lần lượt √l
√
B. Phần thực là √2, phần ảo là 1 − √
3.
D. Phần thực là 2 − 1, phần ảo là − 3.
Câu 22. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 8 năm.
B. 10 năm.
C. 9 năm.
D. 7 năm.
Câu 23. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là 4.
B. Phần thực là 3, phần ảo là −4.
C. Phần thực là −3, phần ảo là −4.
D. Phần thực là 3, phần ảo là 4.
Câu 24. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, √biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là√
a3
4a3 3
a3
2a3 3
.
B.
.
C.
.
D.
.
A.
3
6
3
3
Câu 25. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 12.
B. 27.
C.
.
D. 18.
2
Câu 26. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết
S
H
⊥
(ABCD),
S
A
=
a
√
√ 5. Thể tích khối chóp3 S .ABCD là
3
3
2a 3
4a 3
2a
4a3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Trang 2/10 Mã đề 1
Câu 27. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD
√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng
√
√
√
a 2
a 2
.
B. 2a 2.
.
A.
C. a 2.
D.
4
2
Câu 28. Nếu khơng sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Bốn tứ diện đều và một hình chóp tam giác đều.
B. Một tứ diện đều và bốn hình chóp tam giác đều.
C. Năm tứ diện đều.
D. Năm hình chóp tam giác đều, khơng có tứ diện đều.
x+1
bằng
x→−∞ 6x − 2
1
B. .
3
Câu 29. Tính lim
A. 1.
7n2 − 2n3 + 1
3n3 + 2n2 + 1
2
A. 0.
B. - .
3
x+1
bằng
Câu 31. Tính lim
x→+∞ 4x + 3
1
A. .
B. 1.
4
C.
1
.
6
D.
1
.
2
C.
7
.
3
D. 1.
C.
1
.
3
D. 3.
Câu 30. Tính lim
d = 120◦ .
Câu 32. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
C. 2a.
D. 3a.
A. 4a.
B.
2
Câu 33. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là
√
3
3
√
a 6
a 5
a3 15
A.
.
B.
.
C.
.
D. a3 6.
3
3
3
Câu 34. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
A. V = S h.
B. V = 3S h.
C. V = S h.
3
1
D. V = S h.
2
Câu 35. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường
√ thẳng BD bằng
√
√
√
b a2 + c2
c a2 + b2
abc b2 + c2
a b2 + c2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 36. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 2ac
3b + 3ac
A.
.
B.
.
C.
.
c+1
c+3
c+2
D.
3b + 2ac
.
c+2
Câu 37. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 4.
B. V = 6.
C. V = 5.
D. V = 3.
Câu 38. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
A. − .
B. − .
C. −e.
e
2e
D. −
1
.
e2
Trang 3/10 Mã đề 1
Câu 39. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 84cm3 .
B. 64cm3 .
C. 48cm3 .
D. 91cm3 .
Câu 40. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 8 lần.
B. Tăng gấp 6 lần.
C. Tăng gấp 4 lần.
D. Tăng gấp đôi.
Câu 41. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều đúng.
B. Chỉ có (II) đúng.
C. Cả hai đều sai.
D. Chỉ có (I) đúng.
Câu 42. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
ab
1
1
.
B. √
.
C. 2
.
D. √
.
A. √
2
a +b
2 a2 + b2
a2 + b2
a2 + b2
Câu 43. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m , 0.
B. m < 0.
C. m = 0.
D. m > 0.
Câu 44. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối bát diện đều. B. Khối tứ diện đều.
D. Khối 20 mặt đều.
C. Khối 12 mặt đều.
3
Câu 45. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e.
B. e3 .
C. e5 .
√3
4
Câu 46. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
5
7
5
B. a 8 .
C. a 3 .
A. a 3 .
D. e2 .
2
D. a 3 .
Câu 47. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45√◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là
10a3 3
A.
.
B. 40a3 .
C. 10a3 .
D. 20a3 .
3
Câu 48. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {4; 3}.
B. {5; 3}.
C. {3; 4}.
D. {3; 3}.
Câu 49. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ đứng là hình lăng trụ đều.
C. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ tứ giác đều là hình lập phương.
2
Câu 50. Tính
√ (1 + 2i)z = 3 + 4i.
√4 mô đun của số phức z biết
B. |z| = 2 5.
C. |z| = 5.
A. |z| = 5.
D. |z| =
Câu 51. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = (0; +∞).
B. D = R.
D. D = R \ {1}.
C. D = R \ {0}.
√
5.
Câu 52. Phát biểu nào sau đây là sai?
A. lim un = c (Với un = c là hằng số).
1
C. lim √ = 0.
n
1
= 0 với k > 1.
nk
D. lim qn = 1 với |q| > 1.
B. lim
Trang 4/10 Mã đề 1
Câu 53. Hàm số y =
A. x = 3.
x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 0.
C. x = 1.
D. x = 2.
π
Câu 54. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3
√
trị của biểu thức T = a + b 3.
√
√
A. T = 2.
B. T = 3 3 + 1.
C. T = 4.
D. T = 2 3.
Câu 55. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là 4.
B. Phần thực là 4, phần ảo là −1.
C. Phần thực là 4, phần ảo là 1.
D. Phần thực là −1, phần ảo là −4.
0 0 0 0
0
Câu 56.√ [2] Cho hình lâp phương
√ bằng
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
a 6
a 3
a 6
a 6
A.
.
B.
.
C.
.
D.
.
3
2
2
7
Câu 57. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lăng trụ tam giác.
B. Khối lập phương.
C. Khối tứ diện.
D. Khối bát diện đều.
log2 240 log2 15
−
+ log2 1 bằng
log3,75 2 log60 2
B. 1.
C. −8.
Câu 58. [1-c] Giá trị biểu thức
A. 4.
D. 3.
Câu 59. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. V = 4π.
B. 16π.
C. 32π.
D. 8π.
Câu 60. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
mx − 4
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
B. 45.
C. 34.
D. 67.
Câu 61. Tìm m để hàm số y =
A. 26.
Câu 62. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của
nó
A. Tăng lên n lần.
B. Giảm đi n lần.
C. Không thay đổi.
D. Tăng lên (n − 1) lần.
Câu 63. Khối đa diện đều loại {3; 5} có số mặt
A. 30.
B. 8.
C. 20.
D. 12.
Câu 64. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.
B. 1.
C. 3.
D. Vô nghiệm.
Câu 65. [4-1245d] Trong tất cả√các số phức z thỏa mãn hệ
√ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
A. 1.
B. 10.
C. 2.
D. 2.
√
Câu 66. [12215d] Tìm m để phương trình 4 x+
9
A. m ≥ 0.
B. 0 ≤ m ≤ .
4
1−x2
√
− 3m + 4 = 0 có nghiệm
3
3
C. 0 < m ≤ .
D. 0 ≤ m ≤ .
4
4
− 4.2 x+
1−x2
Câu 67. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên khoảng (−2; 1).
B. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
Trang 5/10 Mã đề 1
9x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9x + 3
1
A. 2.
B. 1.
C. −1.
D. .
2
!
3n + 2
+ a2 − 4a = 0. Tổng các phần tử
Câu 69. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
n+2
của S bằng
A. 3.
B. 4.
C. 5.
D. 2.
Câu 68. [2-c] Cho hàm số f (x) =
Câu 70.
Z Trong cácα+1khẳng định sau, khẳng định nào sai? Z
x
A.
xα dx =
+ C, C là hằng số.
B.
0dx = C, C là hằng số.
α+1
Z
Z
1
C.
dx = x + C, C là hằng số.
D.
dx = ln |x| + C, C là hằng số.
x
Câu 71. [1] Tập
! xác định của hàm số y! = log3 (2x + 1) là
!
!
1
1
1
1
A. − ; +∞ .
B.
; +∞ .
C. −∞; − .
D. −∞; .
2
2
2
2
Câu 72. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 8 mặt.
C. 7 mặt.
D. 6 mặt.
Câu 73. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −10.
B. P = 10.
C. P = 21.
D. P = −21.
8
Câu 74. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 82.
B. 81.
C. 96.
D. 64.
Câu 75. Khối đa diện đều loại {3; 3} có số mặt
A. 5.
B. 4.
C. 3.
D. 2.
Câu 76. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e4 .
B. 2e2 .
C. −2e2 .
D. −e2 .
√
Câu 77. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị
" nhỏ! nhất của biểu thức P = x + 2y thuộc tập nào dưới
" đây?
!
5
5
A.
;3 .
B. (1; 2).
C. 2; .
D. [3; 4).
2
2
π π
Câu 78. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 1.
B. −1.
C. 7.
D. 3.
[ = 60◦ , S O
Câu 79. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a. Khoảng cách từ A đến (S
√ BC) bằng
√
√
a 57
a 57
2a 57
A.
.
B. a 57.
C.
.
D.
.
19
17
19
Câu 80. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −9.
B. −12.
C. −5.
D. −15.
2
x − 5x + 6
Câu 81. Tính giới hạn lim
x→2
x−2
A. 0.
B. 1.
C. 5.
D. −1.
Câu 82. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt phẳng vng góc với (ABCD).
Thể tích khối chóp
√ S .ABCD là
√
3
3
3
√
a 3
a 3
a 2
A.
.
B. a3 3.
C.
.
D.
.
4
2
2
Trang 6/10 Mã đề 1
Câu 83. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 5 mặt.
B. 3 mặt.
C. 4 mặt.
Câu 84. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
A. f 0 (0) = 10.
B. f 0 (0) =
.
C. f 0 (0) = ln 10.
ln 10
Câu 85. Khối đa diện đều loại {3; 4} có số cạnh
A. 10.
B. 6.
C. 12.
Câu 86. Hàm số f có nguyên hàm trên K nếu
A. f (x) liên tục trên K.
C. f (x) có giá trị lớn nhất trên K.
4x + 1
Câu 87. [1] Tính lim
bằng?
x→−∞ x + 1
A. −4.
B. 2.
D. 6 mặt.
D. f 0 (0) = 1.
D. 8.
B. f (x) có giá trị nhỏ nhất trên K.
D. f (x) xác định trên K.
C. 4.
D. −1.
Câu 88. Phát biểu nào sau đây là sai?
1
A. lim qn = 0 (|q| > 1).
B. lim k = 0.
n
1
C. lim = 0.
D. lim un = c (un = c là hằng số).
n
Câu 89. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; +∞).
B. Hàm số đồng biến trên khoảng (0; 2).
C. Hàm số nghịch biến trên khoảng (−∞; 2).
D. Hàm số nghịch biến trên khoảng (0; 2).
1
a
, với a, b ∈ Z. Giá trị của a + b là
Câu 90. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
4 b ln 3
A. 4.
B. 7.
C. 1.
D. 2.
Câu 91. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
18
15
6
9
Câu 92. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó không rút tiền ra?
A. 12 năm.
B. 11 năm.
C. 10 năm.
D. 14 năm.
1
Câu 93. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = e + 1.
B. xy = −e − 1.
C. xy0 = −ey + 1.
D. xy0 = ey − 1.
Câu 94. Dãy số nào sau đây có giới hạn là 0?
n2 − 3n
1 − 2n
.
B. un =
.
A. un =
2
n
5n + n2
5
Câu 95. Tính lim
n+3
A. 1.
B. 2.
C. un =
n2 + n + 1
.
(n + 1)2
D. un =
C. 0.
D. 3.
C. 1.
D. +∞.
n2 − 2
.
5n − 3n2
Câu 96. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 3.
B. 2.
Câu 97. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
A. lim [ f (x)g(x)] = ab.
B. lim [ f (x) + g(x)] = a + b.
x→+∞
x→+∞
Trang 7/10 Mã đề 1
C. lim
x→+∞
f (x) a
= .
g(x) b
D. lim [ f (x) − g(x)] = a − b.
x→+∞
Câu 98. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục ảo.
B. Đường phân giác góc phần tư thứ nhất.
C. Hai đường phân giác y = x và y = −x của các góc tọa độ.
D. Trục thực.
√
Câu 99. Thể tích của khối lập phương có cạnh bằng a 2 √
√
√
2a3 2
3
3
A. V = a 2.
B. 2a 2.
C.
.
D. V = 2a3 .
3
Câu 100. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của
phẳng (AIC) có diện√tích là
√ hình chóp S .ABCD với mặt
√
2
2
2
a 2
11a
a2 5
a 7
.
B.
.
C.
.
D.
.
A.
8
4
32
16
Câu 101. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 24.
B. 22.
C. 23.
D. 21.
Câu 102. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (−1; −7).
B. (2; 2).
C. (0; −2).
D. (1; −3).
Câu 103. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có một.
B. Có vơ số.
C. Có hai.
D. Khơng có.
Câu 104. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −7.
B. −3.
C. Không tồn tại.
Câu 105. Tính lim
x→5
2
A. .
5
x2 − 12x + 35
25 − 5x
B. −∞.
D. −5.
2
C. − .
5
D. +∞.
2
2
sin x
Câu 106. [3-c]
+ 2cos x √
lần lượt là
√ Giá trị nhỏ nhất và giá trị lớn nhất của hàm
√ số f (x) = 2
A. 2 và 2 2.
B. 2 và 3.
C. 2 và 3.
D. 2 2 và 3.
2
Câu 107. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
1
1
B.
.
C. √ .
A. 2 .
3
e
2e
2 e
D.
2
.
e3
Câu 108. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
ln 2
A. 1.
B. .
C.
.
D. 2.
2
2
Câu 109. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn
nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hồn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ơng A hồn nợ.
100.1, 03
100.(1, 01)3
A. m =
triệu.
B. m =
triệu.
3
3
120.(1, 12)3
(1, 01)3
C. m =
triệu.
D.
m
=
triệu.
(1, 12)3 − 1
(1, 01)3 − 1
Trang 8/10 Mã đề 1
Câu 110. [1] Giá trị của biểu thức 9log3 12 bằng
A. 2.
B. 144.
C. 24.
2n2 − 1
Câu 111. Tính lim 6
3n + n4
2
A. 1.
B. .
C. 0.
3
Câu 112. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vơ nghiệm.
B. 2.
C. 3.
Câu 113. [1] Tính lim
x→3
A. −∞.
x−3
bằng?
x+3
B. 1.
C. 0.
D. 4.
D. 2.
D. 1.
D. +∞.
t
9
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao
9t + m2
cho f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 1.
B. 0.
C. 2.
D. Vô số.
Câu 114. [4] Xét hàm số f (t) =
Câu 115. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. R.
B. (−∞; 1).
C. (0; 2).
D. (2; +∞).
x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
Câu 116. [3-1214d] Cho hàm số y =
x+2
tam giác đều ABI có hai đỉnh A, √
B thuộc (C), đoạn thẳng AB
√ có độ dài bằng
√
A. 2.
B. 2 3.
C. 2 2.
D. 6.
Câu 117. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = 0.
B. m = −3.
C. m = −2.
D. m = −1.
Câu 118. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng 2n + 1.
B. Số mặt của khối chóp bằng số cạnh của khối chóp.
C. Số cạnh của khối chóp bằng 2n.
D. Số mặt của khối chóp bằng 2n+1.
1 − 2n
Câu 119. [1] Tính lim
bằng?
3n + 1
1
B. 1.
A. .
3
C.
2
.
3
2
D. − .
3
Câu 120. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (0; 1).
B. (−∞; 0) và (1; +∞). C. (−∞; −1) và (0; +∞). D. (−1; 0).
Câu 121. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
Câu 122. [1] Đạo hàm của làm số y = log x là
ln 10
1
1
1
A. y0 =
.
B. y0 =
.
C. y0 = .
D.
.
x
x ln 10
x
10 ln x
Câu 123. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
2a
5a
a
8a
A.
.
B.
.
C. .
D.
.
9
9
9
9
Trang 9/10 Mã đề 1
Câu 124. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngồi ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
Câu 125. Khối đa diện đều loại {4; 3} có số mặt
A. 8.
B. 6.
C. 12.
D. 10.
Câu 126. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
5
13
23
9
.
B. − .
C.
.
D. −
.
A.
25
16
100
100
√
Câu 127. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
A. .
B. − .
C. −3.
D. 3.
3
3
Câu 128. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. 3n3 lần.
B. n lần.
C. n2 lần.
D. n3 lần.
[ = 60◦ , S O
Câu 129. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S
√ BC) bằng
√
2a 57
a 57
a 57
A.
.
B.
.
C.
.
D. a 57.
19
17
19
Câu 130. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d ⊥ P.
B. d song song với (P).
C. d nằm trên P.
D. d nằm trên P hoặc d ⊥ P.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
D
2.
B
3.
D
4.
B
6.
B
5. A
7.
9. A
11.
10. A
B
C
12.
C
13.
15.
D
8.
C
14. A
B
16.
17.
18.
D
19. A
20.
21.
B
D
23. A
D
B
22.
C
24.
C
25.
D
26.
27.
D
28.
B
30.
B
31. A
32.
B
33. A
34.
C
36.
C
29.
C
35.
D
37. A
38.
39.
B
40. A
41.
B
42.
43. A
45.
C
47.
D
51.
46.
D
B
D
54.
C
C
56. A
B
C
60.
D
B
64. A
58.
C
61.
C
63.
C
65. A
66.
68.
D
52.
B
57.
62.
B
50. A
53.
55.
B
44.
48.
49. A
D
D
67.
B
69.
1
C
B
70. A
71. A
72. A
73.
74.
B
75.
76.
D
B
77. A
78. A
80.
D
B
79.
D
81.
D
82.
C
83.
C
84.
C
85.
C
86. A
87.
C
88. A
89.
B
92.
B
94.
B
B
90.
B
D
93.
95.
C
96.
97.
C
98.
C
99.
B
100. A
101.
B
102.
C
104.
C
103.
C
105. A
106.
D
107. A
108.
D
109.
D
110.
111.
C
112.
113.
C
114.
115.
C
116.
117.
C
118.
119.
D
121.
125.
D
B
127. A
129.
D
C
B
C
120.
C
123.
B
C
2
D
122.
B
124.
B
126.
D
128.
D
130.
D