Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn tập toán thptqg c2 (549)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (114.08 KB, 5 trang )

Tài liệu Free pdf LATEX

BÀI TẬP ƠN TẬP MƠN TỐN THPT

(Đề thi có 5 trang)

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1

Câu 1. Giá√trị cực đại của hàm số y √
= x3 − 3x2 − 3x + 2

A. 3 + 4 2.
B. 3 − 4 2.
C. −3 − 4 2.


D. −3 + 4 2.

Câu 2. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −2.
B. x = −8.
C. x = 0.
D. x = −5.


Câu 3. Phần thực √
và phần ảo của số phức
√ z = 2 − 1 − 3i lần lượt l√

A. Phần thực là √2, phần ảo là 1 − √


3.
B. Phần thực là 2 −√1, phần ảo là √
3.
C. Phần thực là 2 − 1, phần ảo là − 3.
D. Phần thực là 1 − 2, phần ảo là − 3.
Câu 4. Hàm số f có nguyên hàm trên K nếu
A. f (x) xác định trên K.
C. f (x) liên tục trên K.
!4x
!2−x
3
2


Câu 5. Tập các số x thỏa mãn
3
2
"
!
#
2
2
A. − ; +∞ .
B. −∞; .
3
3

B. f (x) có giá trị nhỏ nhất trên K.
D. f (x) có giá trị lớn nhất trên K.


"

!
2
C.
; +∞ .
5

#
2
D. −∞; .
5

Câu 6. Mệnh đề nào sau đây sai?
A. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
!0
Z
B.
f (x)dx = f (x).
C. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a;Zb).
D. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
Câu 7. Khối đa diện đều loại {3; 4} có số cạnh
A. 6.
B. 8.

C. 12.

f (x)dx = F(x) + C.
D. 10.


Câu 8. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Đường phân giác góc phần tư thứ nhất.
B. Trục thực.
C. Trục ảo.
D. Hai đường phân giác y = x và y = −x của các góc tọa độ.
Câu 9. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −4.
B. 4.
C. −2.

D. 2.

x3 −3x+3

Câu 10. [2-c] Giá trị lớn nhất của hàm số f (x) = e
trên đoạn [0; 2] là
5
2
A. e.
B. e .
C. e .

D. e3 .

Câu 11. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {5; 2}.
B. {2}.
C. {5}.
D. {3}.


Câu 12. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 3 nghiệm.
B. 2 nghiệm.
C. 1 nghiệm.
D. Vô nghiệm.
Câu 13. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim+ f (x) = f (b).
B. lim+ f (x) = f (a) và lim− f (x) = f (b).
x→a
x→a
x→b
x→b
C. lim− f (x) = f (a) và lim− f (x) = f (b).
D. lim− f (x) = f (a) và lim+ f (x) = f (b).
x→a

x→b

x→a

x→b

Trang 1/5 Mã đề 1


d = 300 .
Câu 14. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vng tại A. BC = 2a, ABC
Độ dài cạnh bên
CC 0 = 3a. Thể tích V √của khối lăng trụ đã cho.



a3 3
3a3 3
.
B. V =
.
C. V = 6a3 .
D. V = 3a3 3.
A. V =
2
2
Câu 15. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 6 mặt.
C. 8 mặt.
D. 7 mặt.
Câu 16. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng khơng đổi trong thời gian ơng A hồn nợ.
100.(1, 01)3
120.(1, 12)3
A. m =
triệu.
B. m =
triệu.
3
(1, 12)3 − 1

(1, 01)3
100.1, 03
C. m =
triệu.
D. m =
triệu.
3
(1, 01) − 1
3
Câu 17. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (II) đúng.

B. Cả hai câu trên sai.

C. Chỉ có (I) đúng.

D. Cả hai câu trên đúng.

Câu 18. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.

B. 9 mặt.
C. 6 mặt.
D. 3 mặt.
Câu 19. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
Câu 20. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog
A. 25.

B. 5.

C.


a

5



bằng
5.

D.

1
.
5


Câu 21. [1] Đạo hàm của hàm số y = 2 x là
1
1
A. y0 = 2 x . ln x.
B. y0 = x
.
C. y0 =
.
D. y0 = 2 x . ln 2.
2 . ln x
ln 2
Câu 22. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−3; 1].
B. (−∞; −3].
C. [1; +∞).
D. [−1; 3].
7n2 − 2n3 + 1
Câu 23. Tính lim 3
3n + 2n2 + 1
2
7
A. - .
B. .
C. 0.
3
3
Câu 24. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (−1; −7).

B. (0; −2).
C. (2; 2).

D. 1.
D. (1; −3).

Câu 25. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A.
.
B. 18.
C. 27.
D. 12.
2
Trang 2/5 Mã đề 1



Câu 26. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vơ số.
B. 64.
C. 63.
D. 62.

Câu 27. [1] Biết log6 a = 2 thì log6 a bằng
A. 36.
B. 4.
C. 108.

D. 6.
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 28. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là



a3 2
a3 3
a3 3
.
B.
.
C.
.
D. 2a2 2.
A.
24
24
12
[ = 60◦ , S O
Câu 29. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.√Khoảng cách từ O đến (S BC) bằng


a 57
2a 57
a 57

A.
.
B.
.
C. a 57.
.
D.
17
19
19
cos n + sin n
Câu 30. Tính lim
n2 + 1
A. −∞.
B. 0.
C. +∞.
D. 1.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 31. [3-12217d] Cho hàm số y = ln
x+1
0
y
0
y
A. xy = e + 1.
B. xy = −e − 1.
C. xy0 = −ey + 1.
D. xy0 = ey − 1.
0 0 0 0

0
Câu 32.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 6
a 3
a 6
A.
.
B.
.
C.
.
D.
.
7
2
2
3
Câu 33. Phát biểu nào sau đây là sai?
1
1
A. lim √ = 0.
B. lim k = 0 với k > 1.
n
n
n
C. lim q = 1 với |q| > 1.
D. lim un = c (Với un = c là hằng số).


Câu 34. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. 0.
B. 1.

C. 2.

D. +∞.

Câu 35. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 91cm3 .
B. 84cm3 .
C. 48cm3 .
D. 64cm3 .
Câu 36. Dãy số nào sau đây có giới hạn khác 0?
1
n+1
A.
.
B. √ .
n
n

C.

1
.
n


D.

sin n
.
n

Câu 37. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
B. Số đỉnh của khối chóp bằng số mặt của khối chóp.
C. Số cạnh của khối chóp bằng số mặt của khối chóp.
D. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
x+1
bằng
x→−∞ 6x − 2
1
1
1
A. 1.
B. .
C. .
D. .
2
3
6
Câu 39. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng S B và AD bằng





a 2
a 2
A. a 3.
B. a 2.
C.
.
D.
.
3
2
Câu 38. Tính lim

Trang 3/5 Mã đề 1


Câu 40. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối 20 mặt đều.

C. Khối bát diện đều.

D. Khối tứ diện đều.

Câu 41. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. 3.
C. 2.

D. Vô nghiệm.


Câu 42. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. (1; 2).
B. (−∞; +∞).
C. [1; 2].

D. [−1; 2).

Câu 43. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 0.
B. 2.
C. 1.

D. 3.

Câu 44. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
A. 2e + 1.

B. 3.

C. 2e.

Câu 45. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 2 nghiệm.
B. 1 nghiệm.
C. Vơ nghiệm.

D.

2

.
e

D. 3 nghiệm.

Câu 46. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối tứ diện.
B. Khối lập phương.
C. Khối bát diện đều.
D. Khối lăng trụ tam giác.
Câu 47. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 5 mặt.
C. 4 mặt.
D. 6 mặt.
!
5 − 12x
Câu 48. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. 3.
B. Vô nghiệm.
C. 2.
D. 1.
1 − xy
Câu 49. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x√+ y.




2 11 − 3
9 11 − 19
9 11 + 19
18 11 − 29
A. Pmin =
.
B. Pmin =
. C. Pmin =
. D. Pmin =
.
3
9
9
21
Câu 50. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tam giác và một hình chóp tứ giác.
B. Hai hình chóp tứ giác.
C. Một hình chóp tứ giác và một hình chóp ngũ giác.
D. Hai hình chóp tam giác.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 4/5 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1

1.

D

3.

2.

C

5. A

B

4.

C

6.

C

7.

C

8.

9.


C

10.

B

11.

C

12.

B

13.

14. A

B

15. A

16.

17.
19.

D

C


18.

D

D

20. A

B
D

21.

22. A

23. A

24.

B
D

25.

B

26.

27.


B

28.

B
B

29.

D

30.

31.

D

32.

33.

C

37.

34. A
D

35.


D

36. A
D

38.

B

39.

D

40. A

41. A

42.

B

43. A

44.

B

45. A


46. A

47.

C

49. A

1

48.

D

50.

D



×