Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn tập toán thptqg 4 (4)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (152.65 KB, 12 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

Câu 1. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy
(ABC) một
góc bằng 60◦ . Thể tích√khối chóp S .ABC là


a3 3
a3 3
a3
a3 3
A.
.
B.
.
C.
.
D.
.
4
8
4
12
Câu 2. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)


hợp với đáy một góc 60◦ . Thể tích khối

√ chóp S .ABCD là 3 √
3
3

3
a
3
a
3
2a
A. a3 3.
.
C.
.
D.
.
B.
3
3
6

Câu 3.√Xác định phần ảo của số phức z = ( 2 + 3i)2

A. 6 2.
B. −7.
C. 7.
D. −6 2.
Câu 4. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu

A. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngồi ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
Câu 5. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một nguyên
hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
B. F(x) = G(x) trên khoảng (a; b).
C. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
D. Cả ba câu trên đều sai.
Câu 6. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18.

A. 9.
B. 27.
C. 8.
D. 3 3.
Câu 7. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hồn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ơng A hồn nợ.
120.(1, 12)3
(1, 01)3
A. m =
triệu.
B.
m
=
triệu.
(1, 12)3 − 1

(1, 01)3 − 1
100.(1, 01)3
100.1, 03
C. m =
triệu.
D. m =
triệu.
3
3
log2 240 log2 15
Câu 8. [1-c] Giá trị biểu thức

+ log2 1 bằng
log3,75 2 log60 2
A. 3.
B. 4.
C. −8.
D. 1.
9t
Câu 9. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 2.
B. 1.
C. 0.
D. Vô số.
2mx + 1
1
Câu 10. Giá trị lớn nhất của hàm số y =

trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. 0.
B. −5.
C. 1.
D. −2.
Trang 1/10 Mã đề 1


Câu 11. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Khơng có câu nào B. Câu (II) sai.
C. Câu (III) sai.
D. Câu (I) sai.
sai.
Câu 12. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 8 lần.
B. Tăng gấp 6 lần.
C. Tăng gấp 4 lần.
D. Tăng gấp đôi.
Câu 13. Giá trị của lim (3x2 − 2x + 1)
x→1

A. 1.


B. 3.

Câu 14. Khối đa diện đều loại {4; 3} có số đỉnh
A. 8.
B. 10.

C. 2.

D. +∞.

C. 4.

D. 6.

Câu 15. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên sai.

B. Chỉ có (I) đúng.

C. Cả hai câu trên đúng. D. Chỉ có (II) đúng.


Câu 16. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
D. Hàm số nghịch biến trên khoảng (−2; 1).
Câu 17. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. 2.
C. Vô nghiệm.
D. 1.
Câu 18. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 3, 5 triệu đồng.
B. 50, 7 triệu đồng.
C. 70, 128 triệu đồng. D. 20, 128 triệu đồng.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
B. xy = e + 1.
C. xy0 = −ey + 1.
D. xy0 = −ey − 1.

Câu 19. [3-12217d] Cho hàm số y = ln
A. xy0 = ey − 1.

Câu 20. Khối chóp ngũ giác có số cạnh là

A. 11 cạnh.
B. 10 cạnh.
C. 12 cạnh.
D. 9 cạnh.
Z 3
a
a
x
Câu 21. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 28.
B. P = 4.
C. P = −2.
D. P = 16.
Trang 2/10 Mã đề 1


Câu 22. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng
1
C. 5.
A. 25.
B. .
5




D.

5.

Câu 23.
√ [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn nhất
√ của |z|
B. 1.
C. 2.
D. 3.
A. 5.
Câu 24. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 + 2 sin 2x.
B. −1 + 2 sin 2x.
C. 1 − sin 2x.
D. −1 + sin x cos x.
 π
Câu 25. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


3 π6
2 π4
1 π3
A. 1.
B.
e .
e .
C. e .

D.
2
2
2
x
x−3 x−2 x−1
+
+
+
và y = |x + 2| − x − m (m là tham
Câu 26. [4-1213d] Cho hai hàm số y =
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2).
B. (−∞; 2].
C. [2; +∞).
D. (2; +∞).
Câu 27. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {5; 3}.
B. {4; 3}.
C. {3; 4}.

D. {3; 3}.

Câu 28. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
5

13
23
9
.
B. − .
C.
.
D. −
.
A.
25
16
100
100
Câu 29. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 7 mặt.
C. 6 mặt.

D. 9 mặt.

Câu 30. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2√+ 1)2 x trên [0; 1] bằng 8 √
A. m = ±1.
B. m = ±3.
C. m = ± 2.
D. m = ± 3.
Câu 31. Khối đa diện đều loại {3; 3} có số đỉnh
A. 2.
B. 5.


C. 3.

D. 4.

Câu 32. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
Câu 33. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 220 triệu.
B. 210 triệu.
C. 216 triệu.
D. 212 triệu.
Câu 34. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt phẳng vng góc với (ABCD).
Thể tích khối chóp
√ S .ABCD là

3
3
3

a 3
a 3
a 2

A.
C.
.
B. a3 3.
.
D.
.
2
4
2
Câu 35. Tính diện tích hình phẳng giới hạn bởi các đường y = xe x , y = 0, x = 1. √
3
1
3
A. .
B. 1.
C. .
D.
.
2
2
2
Trang 3/10 Mã đề 1


π
Câu 36. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu thức T = a + b 3.



C. T = 2.
D. T = 3 3 + 1.
A. T = 4.
B. T = 2 3.
!4x
!2−x
2
3
Câu 37. Tập các số x thỏa mãn


#
" 3
! 2
"
!
#
2
2
2
2
A. −∞; .
B. − ; +∞ .
C.
; +∞ .
D. −∞; .
3
3

5
5
Câu 38. Khối đa diện đều loại {4; 3} có số mặt
A. 6.
B. 10.

C. 8.

D. 12.

Câu 39. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 2ac
3b + 3ac
3b + 3ac
.
B.
.
C.
.
D.
.
A.
c+1
c+3
c+2
c+2
Câu 40. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d song song với (P).
B. d ⊥ P.

C. d nằm trên P.
D. d nằm trên P hoặc d ⊥ P.
Câu 41. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 1200 cm2 .
B. 120 cm2 .
C. 160 cm2 .
D. 160 cm2 .
Câu 42. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Ba mặt.
B. Hai mặt.
C. Một mặt.

D. Bốn mặt.

Câu 43. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng là hình lăng trụ đều.
B. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ tứ giác đều là hình lập phương.
D. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
1
bằng
Câu 44. [1] Giá trị của biểu thức log √3
10
1
A. −3.
B. − .
3
Câu 45. Dãy! số nào có giới hạn bằng 0?!
n

n
−2
6
.
B. un =
.
A. un =
5
3

C.

1
.
3

C. un = n2 − 4n.

D. 3.

D. un =

n3 − 3n
.
n+1

Câu 46. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất của hàm số. Khi đó tổng

√M + m


A. 16.
B. 7 3.
C. 8 2.
D. 8 3.
1 + 2 + ··· + n
Câu 47. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
A. Dãy số un khơng có giới hạn khi n → +∞.
B. lim un = 0.
1
C. lim un = 1.
D. lim un = .
2
1
Câu 48. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 2.
B. 1.
C. 4.
D. 3.
2
x −9
Câu 49. Tính lim
x→3 x − 3
A. +∞.
B. 6.
C. 3.

D. −3.
Trang 4/10 Mã đề 1


d = 60◦ . Đường chéo
Câu 50. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0





4a3 6
a3 6
2a3 6
3
.
B.
.
C. a 6.
D.
.
A.
3
3
3
Câu 51. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 27cm3 .
B. 46cm3 .

C. 64cm3 .
D. 72cm3 .
Câu 52. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. 1.
B. 2.

C. 0.

D. +∞.

Câu 53. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ là
√ Thể tích khối chóp S 3.ABC


a3 3
a 2
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
6

12
4
12
Câu 54. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. e2016 .
B. 0.
C. 22016 .
D. 1.
x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
Câu 55. [3-1214d] Cho hàm số y =
x+2
tam giác đều ABI có hai đỉnh A, √
B thuộc (C), đoạn thẳng AB

√ có độ dài bằng
A. 2.
B. 2 2.
C. 2 3.
D. 6.
2−n
Câu 56. Giá trị của giới hạn lim
bằng
n+1
A. −1.
B. 1.
C. 0.
D. 2.
2

2
2
1 + 2 + ··· + n
Câu 57. [3-1133d] Tính lim
n3
2
1
A. .
B. 0.
C. .
D. +∞.
3
3
Câu 58. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có hai.
B. Có một.
C. Khơng có.
D. Có vơ số.

Câu 59. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị
" đây?
!
" nhỏ! nhất của biểu thức P = x + 2y thuộc tập nào dưới
5
5
A.
;3 .
B. (1; 2).

C. 2; .
D. [3; 4).
2
2
Câu 60. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 25 triệu đồng.
B. 3, 03 triệu đồng.
C. 2, 20 triệu đồng.
D. 2, 22 triệu đồng.
Câu 61. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là 4.
B. Phần thực là 4, phần ảo là −1.
C. Phần thực là 4, phần ảo là 1.
D. Phần thực là −1, phần ảo là −4.
ln x p 2
1
Câu 62. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
1
1
8
8
A. .
B. .

C. .
D. .
9
3
3
9
Trang 5/10 Mã đề 1


Câu 63. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 4 mặt.
C. 8 mặt.

D. 10 mặt.

2
Câu 64. Tính
√ mơ đun của số phức z√4biết (1 + 2i)z = 3 + 4i. √
A. |z| = 2 5.
B. |z| = 5.
C. |z| = 5.

D. |z| = 5.

Câu 65. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số đồng biến trên khoảng (1; 2).
B. Hàm số nghịch biến trên khoảng (0; 1).
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số nghịch biến trên khoảng (−∞; 0).

2n + 1
Câu 66. Tìm giới hạn lim
n+1
A. 3.
B. 1.

C. 2.

D. 0.

Câu 67. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối bát diện đều.

C. Khối 12 mặt đều.
D. Khối 20 mặt đều.
√3
Câu 68. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga a bằng
1
1
A. −3.
B. − .
C. 3.
D. .
3
3
0 0 0 0
Câu 69. [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab

1
1
ab
.
B.
.
C.
.
D.
.
A. 2



a + b2
a2 + b2
a2 + b2
2 a2 + b2
Câu 70. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m > 3.
B. m ≥ 3.
C. m < 3.
D. m ≤ 3.
Câu 71. Phát biểu nào sau đây là sai?
1
= 0.
nk
1
C. lim qn = 0 (|q| > 1).

D. lim = 0.
n
Câu 72. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
A. lim un = c (un = c là hằng số).

B. lim

Câu 73. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a =
.
B. log2 a = loga 2.
C. log2 a =
.
D. log2 a = − loga 2.
log2 a
loga 2
Câu 74. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1

A. 9.

B. 7.

C. 0.


D. 5.

Câu 75. Cho
√ số phức z thỏa mãn |z +
√ 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.
B. |z| = 10.
C. |z| = 17.
D. |z| = 10.
A. |z| = 17.
Câu 76. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = 0.
B. m = −1.
C. m = −3.

D. m = −2.

Câu 77. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 91cm3 .
B. 48cm3 .
C. 84cm3 .
D. 64cm3 .
4x + 1
Câu 78. [1] Tính lim
bằng?
x→−∞ x + 1
A. −4.
B. −1.
C. 2.

D. 4.
Trang 6/10 Mã đề 1


Câu 79. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn cạnh.
B. Ba cạnh.
C. Năm cạnh.

D. Hai cạnh.

Câu 80. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng



3a 58
a 38
3a
3a 38
A.
.
B.
.
C.
.
D.
.
29

29
29
29

Câu 81. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 2; m = 1.
B. M = e−2 − 2; m = 1.
2
−2
C. M = e − 2; m = e + 2.
D. M = e−2 + 1; m = 1.
Câu 82. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 3.
B. 1.
C. 2.

D. 0.

Câu 83. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. Vô số.
B. 1.
C. 3.
D. 2.
Câu 84. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = [2; 1].
B. D = R \ {1; 2}.
C. D = (−2; 1).
2


D. D = R.

x3 −3x+3

Câu 85. [2-c] Giá trị lớn nhất của hàm số f (x) = e
trên đoạn [0; 2] là
2
5
A. e .
B. e .
C. e.

D. e3 .

Câu 86. Khối đa diện đều loại {3; 4} có số cạnh
A. 12.
B. 10.

D. 8.

C. 6.

Câu 87. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 88. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả

vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 18 tháng.
B. 15 tháng.
C. 17 tháng.
D. 16 tháng.
Câu 89. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lăng trụ.
B. Hình chóp.
C. Hình lập phương.

D. Hình tam giác.

Câu 90. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối√chóp S .ABMN là



a3 3
5a3 3
2a3 3
4a3 3
.
B.
.
C.
.
D.
.
A.

2
3
3
3
Câu 91. [1] Đạo hàm của làm số y = log x là
1
1
ln 10
1
A.
.
B. y0 =
.
C. y0 =
.
D. y0 = .
10 ln x
x ln 10
x
x
Câu 92. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3 √


2 3
A. 2.
B. 1.
C.
.
D. 3.
3
Trang 7/10 Mã đề 1


Câu 93. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
đến đường√thẳng BD0 bằng



c a2 + b2
a b2 + c2
b a2 + c2
abc b2 + c2
.
B. √
.
C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2

a2 + b2 + c2
Câu 94. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
B. − < m < 0.
C. m ≥ 0.
D. m ≤ 0.
A. m > − .
4
4
 π π
3
Câu 95. Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 1.
B. 3.
C. 7.
D. −1.
Câu 96. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (−1; −7).
B. (1; −3).
C. (0; −2).
Câu 97.
bằng 1 là:
√ Thể tích của khối lăng√trụ tam giác đều có cạnh √
3
3
3
A.

.
B.
.
C.
.
12
2
4
Câu 98. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 7, 2.
B. 0, 8.
C. 72.

D. (2; 2).

D.

3
.
4

D. −7, 2.

Câu 99. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết
√a 5. Thể tích khối chóp3 S .ABCD là
√ S H ⊥ (ABCD), S A =
4a3 3
2a

4a3
2a3 3
.
B.
.
C.
.
D.
.
A.
3
3
3
3
Câu 100. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≤ .
B. m ≥ .
C. m < .
D. m > .
4
4
4
4
0 0 0 0
Câu 101. [3] Cho hình lập phương ABCD.A B C D có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C) và (A0C 0 D) bằng





a 3
a 3
2a 3
A. a 3.
B.
.
C.
.
D.
.
3
2
2
[ = 60◦ , S O
Câu 102. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a. Khoảng cách từ O đến (S√BC) bằng


a 57
2a 57
a 57
A.
.
B. a 57.
C.

.
D.
.
17
19
19
x2 − 12x + 35
Câu 103. Tính lim
x→5
25 − 5x
2
2
A. .
B. −∞.
C. − .
D. +∞.
5
5
Câu 104. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n2 lần.
B. n3 lần.
C. n lần.
D. 3n3 lần.
x3 − 1
Câu 105. Tính lim
x→1 x − 1
A. +∞.
B. −∞.
C. 3.
D. 0.

√3
4
Câu 106. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
5
7
2
5
A. a 8 .
B. a 3 .
C. a 3 .
D. a 3 .
d = 120◦ .
Câu 107. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A.
.
B. 4a.
C. 2a.
D. 3a.
2
Trang 8/10 Mã đề 1


Câu 108. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi
G la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1

1
A. k = .
B. k = .
C. k = .
D. k = .
18
9
15
6
[ = 60◦ , S A ⊥ (ABCD).
Câu 109. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh
√chóp S .ABCD là
√ S C là a. Thể tích khối
3
3
3

a 3
a 2
a 2
.
B.
.
C.
.
D. a3 3.
A.
4
6

12
Câu 110. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.




5 13
A. 2.
B.
.
C. 2 13.
D. 26.
13
Câu 111. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 27.
B. 12.
C. 18.
D.
.
2
Câu 112. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối lập phương.
C. Khối bát diện đều. D. Khối 12 mặt đều.
Câu 113. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6

2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 27 m.
B. 25 m.
C. 387 m.
D. 1587 m.
2
2n − 1
Câu 114. Tính lim 6
3n + n4
2
A. 1.
B. 0.
C. 2.
D. .
3
Câu 115. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó khơng rút tiền ra?
A. 10 năm.
B. 12 năm.
C. 14 năm.
D. 11 năm.
Câu 116. Nếu khơng sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Bốn tứ diện đều và một hình chóp tam giác đều.
B. Năm tứ diện đều.
C. Một tứ diện đều và bốn hình chóp tam giác đều.
D. Năm hình chóp tam giác đều, khơng có tứ diện đều.

Z 1
Câu 117. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
1
A. .
4

0

B.

1
.
2

Câu 118. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R.
B. D = R \ {0}.

C. 0.

D. 1.

C. D = (0; +∞).

D. D = R \ {1}.

Câu 119. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. Vô nghiệm.

C. 3.

D. 1.
Trang 9/10 Mã đề 1


Câu 120. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 24.
B. 22.
C. 21.
D. 23.
Câu 121.
hạn là 0?
!n Dãy số nào sau đây có !giới
n
1
4
A.
.
B.
.
3
e

!n
5
C.
.

3

!n
5
D. − .
3

Câu 122. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
D. .
A. 6.
B. 9.
C. .
2
2
Câu 123.
Cho hàm sốZf (x), g(x)Zliên tục trên R. Trong các
Z
Z mệnh đề sau, mệnhZđề nào sai? Z
f (x)g(x)dx =

A.
Z
C.

f (x)dx g(x)dx.
Z
Z

( f (x) − g(x))dx =
f (x)dx − g(x)dx.

B.
Z
D.

( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Z
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.

Câu 124. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9
tháng thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không
thay đổi trong thời gian gửi.
A. 0, 8%.
B. 0, 5%.
C. 0, 7%.
D. 0, 6%.
Câu 125. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
B. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
C. Số đỉnh của khối chóp bằng số mặt của khối chóp.
D. Số cạnh của khối chóp bằng số mặt của khối chóp.
Câu 126. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp tứ giác.
B. Hai khối chóp tam giác.
C. Hai khối chóp tứ giác.
D. Một khối chóp tam giác, một khối chóp ngữ giác.

Câu 127. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung
điểm cạnh AB, biết S H ⊥ (ABCD).√Thể tích khối chóp S .ABCD là

4a3 3
a3
2a3 3
a3
.
B.
.
C.
.
D.
.
A.
6
3
3
3
un
Câu 128. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. 1.
B. 0.
C. −∞.
D. +∞.
6
Câu 129. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2 f (x3 ) − √
. Tính
3x

+
1
Z 1
f (x)dx.
0

A. 4.

B. 6.

C. 2.

D. −1.

Câu 130. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 27 lần.
B. Tăng gấp 3 lần.
C. Tăng gấp 9 lần.
D. Tăng gấp 18 lần.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.


2.

B

4. A

3. A
B

8.

9. A

10. A

11. A

12. A

13.

C

14. A

15.

C

16. A


17.

20.
B

25.

24.
D
D

30.

31.

D

32.

33.

D

34. A

35.

B


36. A

37.

B

38. A

39.

D

41.

C

43.

D
D

C
D

D

42.

D


48.

B

53.

B

D

C

52.

C

54.

C

56. A

57.

C

58. A

59. A
B


63. A

D

62.

D

66.
68.

C
1

B

60.
64.
B

B

50.

55.

67.

D


46. A

51. A

65.

C

40.
44.

B

47.

61.

B

28.

29.

49.

B

26.


27. A

45.

D

22. A
C

23.

C

18.

B

19. A
21.

D

6.

C

5.
7.

C


B
C
D


69.

B

70.

B
B

71.

C

72.

73.

C

74. A

75.

B


77.

D

76.

D

78.

D

79.

B

80. A

81.

B

82.

D

84.

D


83.
85.

D
B

87.

86. A

89.
91.

88.

C
D

90. A
92. A

B
C

93.

94. A

95. A


96.
D

99.

104.
C
B

111.

C

113. A

C

115.

B

116.

117.

C

D
B

D

119.

118. A
B

121. A

122.

C

123. A

124.

C

125.

126. A
128.

C

109. A

112.


120.

B

106.

107. A

114.

D

102.

103. A

110.

D

100. A

B

105.

C

98.


C

97.
101.

D

127.
B

129. A

130. A

2

C
B



×