Free LATEX
BÀI TẬP TỐN THPT
(Đề thi có 11 trang)
Thời gian làm bài: 90 phút
Mã đề thi 1
2n + 1
Câu 1. Tìm giới hạn lim
n+1
A. 0.
B. 3.
C. 2.
D. 1.
Câu 2. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 7%.
B. 0, 5%.
C. 0, 6%.
D. 0, 8%.
0 0 0
d = 60◦ . Đường chéo
Câu 3. Cho lăng trụ đứng ABC.A B C có đáy là tam giác vuông tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0
là
√
√
√
√
4a3 6
a3 6
2a3 6
3
B.
.
C.
.
D.
.
A. a 6.
3
3
3
x−2
Câu 4. Tính lim
x→+∞ x + 3
2
D. −3.
A. 2.
B. 1.
C. − .
3
x−3
Câu 5. [1] Tính lim
bằng?
x→3 x + 3
A. 0.
B. 1.
C. +∞.
D. −∞.
Câu 6. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
x
x+1
x−2 x−1
+
+
+
và y = |x + 1| − x − m (m là tham
Câu 7. [4-1212d] Cho hai hàm số y =
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3].
B. (−3; +∞).
C. [−3; +∞).
D. (−∞; −3).
π
Câu 8. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2
√
√
2 π4
1 π3
3 π6
A. 1.
B.
e .
C. e .
D.
e .
2
2
2
Câu 9. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (1; +∞).
B. Hàm số nghịch biến trên khoảng (0; 1).
C. Hàm số nghịch biến trên khoảng (−∞; 0).
D. Hàm số đồng biến trên khoảng (1; 2).
Câu 10. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết
a 5. Thể tích khối chóp S .ABCD là
√ S H ⊥ (ABCD), S A =
√
3
3
4a 3
4a
2a3
2a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Câu 11.
√ [4-1246d] Trong tất cả các số phức z thỏa mãn |z√− i| = 1. Tìm giá trị lớn nhất của |z|
A. 5.
B. 1.
C. 3.
D. 2.
Câu 12. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng
√
√
√
a 2
a 2
A.
.
B.
.
C. a 2.
D. a 3.
3
2
Trang 1/11 Mã đề 1
Câu 13. [1] Đạo hàm của hàm số y = 2 x là
1
1
A. y0 =
.
B. y0 = 2 x . ln 2.
C. y0 = 2 x . ln x.
D. y0 = x
.
ln 2
2 . ln x
Câu 14. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng
√
√
√
√
a 6
.
A. 2a 6.
B. a 6.
C. a 3.
D.
2
√
√
Câu 15. Phần thực√và phần ảo của số √
phức z = 2 − 1 − 3i lần lượt l √
√
3.
B. Phần thực là 1√− 2, phần ảo là −√ 3.
A. Phần thực là √2 − 1, phần ảo là √
C. Phần thực là 2 − 1, phần ảo là − 3.
D. Phần thực là 2, phần ảo là 1 − 3.
2mx + 1
1
Câu 16. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. 0.
B. −2.
C. 1.
D. −5.
!2x−1
!2−x
3
3
Câu 17. Tập các số x thỏa mãn
≤
là
5
5
A. [3; +∞).
B. (+∞; −∞).
C. [1; +∞).
D. (−∞; 1].
Câu 18. Dãy số
!n nào có giới hạn bằng 0?
!n
−2
6
A. un =
.
B. un =
.
3
5
C. un = n2 − 4n.
D. un =
n3 − 3n
.
n+1
Câu 19. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 212 triệu.
B. 216 triệu.
C. 210 triệu.
D. 220 triệu.
Câu 20. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
Câu 21. Khối đa diện đều loại {3; 3} có số cạnh
A. 4.
B. 5.
C. 6.
D. 8.
Câu 22. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
ab
ab
1
.
B. 2
.
C. √
.
D. √
.
A. √
2
a +b
2 a2 + b2
a2 + b2
a2 + b2
Câu 23. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường
√ thẳng BD bằng
√
√
√
b a2 + c2
c a2 + b2
abc b2 + c2
a b2 + c2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 24. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn mặt.
B. Ba mặt.
C. Hai mặt.
D. Năm mặt.
π π
3
Câu 25. Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 1.
B. 3.
C. 7.
D. −1.
2
Câu 26. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
2
1
A. 3 .
B. 3 .
C. √ .
2e
e
2 e
D.
1
.
e2
Trang 2/11 Mã đề 1
√
Câu 27. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
A. −3.
B. .
C. − .
D. 3.
3
3
m
ln2 x
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
Câu 28. [3] Biết rằng giá trị lớn nhất của hàm số y =
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 24.
B. S = 32.
C. S = 135.
D. S = 22.
√3
4
Câu 29. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
7
2
5
5
A. a 3 .
B. a 3 .
C. a 3 .
D. a 8 .
Câu 30.√Thể tích của tứ diện đều √
cạnh bằng a
3
3
a 2
a 2
.
B.
.
A.
12
4
Câu 31. Dãy số nào sau đây có giới hạn là 0?
1 − 2n
n2 + n + 1
.
B. un =
.
A. un =
2
(n + 1)
5n + n2
√
a3 2
C.
.
6
C. un =
n2 − 2
.
5n − 3n2
√
a3 2
D.
.
2
D. un =
n2 − 3n
.
n2
Câu 32. Khối đa diện đều loại {3; 5} có số cạnh
A. 30.
B. 20.
C. 8.
D. 12.
Câu 33. Bát diện đều thuộc loại
A. {5; 3}.
B. {3; 3}.
C. {4; 3}.
D. {3; 4}.
Câu 34. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √
√
3
3
a 6
a 3
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
48
24
8
24
12 + 22 + · · · + n2
Câu 35. [3-1133d] Tính lim
n3
2
1
A. .
B. 0.
C. .
D. +∞.
3
3
Câu 36. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
D. Hàm số nghịch biến trên khoảng (−2; 1).
Câu 37. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất khơng thay đổi?
A. 17 tháng.
B. 15 tháng.
C. 16 tháng.
D. 18 tháng.
Câu 38.
√ Thể tích của khối lăng√trụ tam giác đều có cạnh bằng 1 là:
√
3
3
3
3
A.
.
B.
.
C. .
D.
.
2
12
4
4
Câu 39. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 2400 m.
B. 1134 m.
C. 6510 m.
D. 1202 m.
Câu 40. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có hai.
B. Có một hoặc hai.
C. Có một.
D. Khơng có.
Trang 3/11 Mã đề 1
1
Câu 41. Hàm số y = x + có giá trị cực đại là
x
A. −2.
B. 1.
C. −1.
D. 2.
x+2
Câu 42. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 1.
B. 2.
C. 3.
D. Vơ số.
Câu 43. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vuông góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
.
B.
.
C.
.
D. a3 .
A.
6
24
12
Câu 44.
Z Các khẳng định nào sau
Z đây là sai?
f (u)dx = F(u) +C. B.
!0
f (x)dx = f (x).
Z
Z
Z
Z
C.
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C. D.
k f (x)dx = k
f (x)dx, k là hằng số.
A.
f (x)dx = F(x) +C ⇒
Z
√
Câu 45. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là √
3
√
a3 3
a3
a 3
.
B.
.
C.
.
D. a3 3.
A.
3
12
4
d = 30◦ , biết S BC là tam giác đều
Câu 46. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
26
16
13
9
x+1
Câu 47. Tính lim
bằng
x→+∞ 4x + 3
1
1
D. .
A. 1.
B. 3.
C. .
3
4
Câu 48. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Z 1
Câu 49. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
1
A. .
2
0
B. 0.
C. 1.
x2 − 12x + 35
x→5
25 − 5x
2
2
A. +∞.
B. .
C. − .
5
5
2
3
7n − 2n + 1
Câu 51. Tính lim 3
3n + 2n2 + 1
2
7
A. - .
B. .
C. 1.
3
3
!
1
1
1
Câu 52. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
5
3
A. +∞.
B. .
C. .
2
2
D.
1
.
4
Câu 50. Tính lim
D. −∞.
D. 0.
D. 2.
Trang 4/11 Mã đề 1
Câu 53. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
. Khi đó thể tích khối lăng trụ là
BC là
4
√
√
√
√
a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
36
6
24
Câu 54. [1] Đạo hàm của làm số y = log x là
1
ln 10
1
1
A. y0 =
.
B. y0 =
.
C.
.
D. y0 = .
x ln 10
x
10 ln x
x
Câu 55. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng
√
cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3
√
√
2 3
B. 2.
C. 1.
D.
.
A. 3.
3
Câu 56. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦√. Thể tích khối chóp S .ABCD
√ là
√
3
3
3
3
8a 3
a 3
8a 3
4a 3
.
B.
.
C.
.
D.
.
A.
9
3
9
9
√
Câu 57. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√
√ cho là
√
√
πa3 3
πa3 3
πa3 3
πa3 6
A. V =
.
B. V =
.
C. V =
.
D. V =
.
6
3
2
6
Câu 58. Hàm số nào sau đây khơng có cực trị
x−2
1
A. y = x3 − 3x.
B. y = x + .
C. y =
.
D. y = x4 − 2x + 1.
x
2x + 1
Câu 59. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD
√ = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng
√
√
a 2
a 2
A.
.
B.
.
C. 2a 2.
D. a 2.
2
4
Câu 60. Khối đa diện đều loại {3; 5} có số đỉnh
A. 8.
B. 30.
C. 12.
D. 20.
Câu 61. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị lớn nhất trên K.
C. f (x) liên tục trên K.
B. f (x) có giá trị nhỏ nhất trên K.
D. f (x) xác định trên K.
Câu 62. Cho
Z hai hàm yZ = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
B. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
C. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Câu 63. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 10.
B. P = −21.
C. P = −10.
D. P = 21.
Trang 5/11 Mã đề 1
Câu 64.! Dãy số nào sau đây có giới! hạn là 0?
n
n
4
5
A.
.
B. − .
e
3
!n
5
C.
.
3
Câu 65. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 1.
B. 4.
!n
1
D.
.
3
1
3|x−1|
C. 2.
= 3m − 2 có nghiệm duy
D. 3.
Câu 66. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hồn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 22 triệu đồng.
B. 3, 03 triệu đồng.
C. 2, 20 triệu đồng.
D. 2, 25 triệu đồng.
Câu 67. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 120 cm2 .
B. 1200 cm2 .
C. 160 cm2 .
D. 160 cm2 .
Câu 68. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (III) sai.
B. Khơng có câu nào C. Câu (II) sai.
sai.
1
bằng
Câu 69. [1] Giá trị của biểu thức log √3
10
1
A. −3.
B. 3.
C. .
3
3
2
Câu 70. Hàm số y = x − 3x + 3x − 4 có bao nhiêu cực trị?
A. 3.
B. 2.
C. 1.
D. Câu (I) sai.
1
D. − .
3
D. 0.
Câu 71. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là
√
√
a3 3
a3 3
a3
a3 3
.
B.
.
C.
.
D.
.
A.
12
4
4
8
x+3
Câu 72. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 2.
B. 3.
C. 1.
D. Vô số.
Câu 73. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 12.
B.
.
C. 18.
D. 27.
2
4x + 1
Câu 74. [1] Tính lim
bằng?
x→−∞ x + 1
A. −1.
B. 4.
C. −4.
D. 2.
Câu 75. Khối đa diện đều loại {4; 3} có số đỉnh
A. 8.
B. 10.
C. 6.
D. 4.
Trang 6/11 Mã đề 1
Câu 76. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là
√
√
√
3
a3 3
4a3 3
5a3 3
2a 3
.
B.
.
C.
.
D.
.
A.
3
2
3
3
x2 − 3x + 3
Câu 77. Hàm số y =
đạt cực đại tại
x−2
A. x = 1.
B. x = 0.
C. x = 3.
D. x = 2.
Câu 78. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 1.
B. e2016 .
C. 0.
D. 22016 .
Câu 79. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≥ 3.
B. m ≤ 3.
C. −2 ≤ m ≤ 2.
D. −3 ≤ m ≤ 3.
Câu 80. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng 2n+1.
B. Số mặt của khối chóp bằng số cạnh của khối chóp.
C. Số cạnh của khối chóp bằng 2n.
D. Số đỉnh của khối chóp bằng 2n + 1.
Câu 81. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 2).
B. Hàm số đồng biến trên khoảng (0; +∞).
C. Hàm số đồng biến trên khoảng (0; 2).
D. Hàm số nghịch biến trên khoảng (−∞; 2).
Câu 82. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,
√ N, P bằng
√
√
√
14 3
20 3
A.
.
B. 6 3.
.
D. 8 3.
C.
3
3
0 0
0 0 0
Câu 83. Mặt phẳng (AB C ) chia khối lăng trụ ABC.A B C thành các khối đa diện nào?
A. Hai khối chóp tứ giác.
B. Hai khối chóp tam giác.
C. Một khối chóp tam giác, một khối chóp tứ giác.
D. Một khối chóp tam giác, một khối chóp ngữ giác.
Câu 84. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 3.
B. 0, 2.
C. 0, 4.
D. 0, 5.
Câu 85. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. (1; 2).
B. (−∞; +∞).
C. [1; 2].
D. [−1; 2).
Câu 86. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m > − .
B. m ≤ 0.
C. − < m < 0.
D. m ≥ 0.
4
4
q
2
Câu 87. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 1].
B. m ∈ [−1; 0].
C. m ∈ [0; 4].
D. m ∈ [0; 2].
Câu 88. Giá√trị cực đại của hàm số y√= x3 − 3x2 − 3x + 2
√
A. −3 − 4 2.
B. 3 − 4 2.
C. −3 + 4 2.
√
D. 3 + 4 2.
Trang 7/11 Mã đề 1
Câu 89. Khối chóp ngũ giác có số cạnh là
A. 12 cạnh.
B. 11 cạnh.
C. 9 cạnh.
Câu 90. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 4.
B. −4.
C. −2.
D. 10 cạnh.
D. 2.
Câu 91. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là −4.
B. Phần thực là 3, phần ảo là 4.
C. Phần thực là −3, phần ảo là 4.
D. Phần thực là −3, phần ảo là −4.
log 2x
là
Câu 92. [3-1229d] Đạo hàm của hàm số y =
x2
1
1 − 4 ln 2x
1 − 2 log 2x
1 − 2 ln 2x
A. y0 = 3
.
B. y0 =
.
C. y0 =
.
D. y0 = 3
.
3
3
2x ln 10
2x ln 10
x
x ln 10
Câu 93. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|
√
√
√
√
12 17
.
C. 5.
A. 68.
B.
D. 34.
17
Z 1
6
2
3
. Tính
f (x)dx.
Câu 94. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
0
3x + 1
A. 4.
B. 6.
D. −1.
√
Câu 95. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√
√
√ tích khối chóp S .ABC3 √
3
a 2
a3 6
a3 6
a 6
.
B.
.
C.
.
D.
.
A.
18
6
36
6
Câu 96. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng
√
√
√
a 6
a 6
a 6
.
B.
.
C. a 6.
.
A.
D.
3
2
6
1 − n2
Câu 97. [1] Tính lim 2
bằng?
2n + 1
1
1
1
B. 0.
C. .
D. − .
A. .
2
3
2
√
√
Câu 98. Tìm giá trị lớn nhất của hàm
√
√ số y = x + 3 + 6√− x
A. 3.
B. 2 + 3.
C. 2 3.
D. 3 2.
Câu 99. Phát biểu nào sau đây là sai?
1
A. lim k = 0.
n
1
C. lim = 0.
n
Câu 100. Cho hàm số y = |3 cos x − 4 sin x + 8| với
nhỏ nhất của hàm số. Khi đó tổng
√M + m
A. 16.
B. 8 3.
C. 2.
B. lim un = c (un = c là hằng số).
D. lim qn = 0 (|q| > 1).
x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
√
C. 8 2.
√
D. 7 3.
tan x + m
Câu 101. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
π
0; .
4
A. (1; +∞).
B. (−∞; 0] ∪ (1; +∞). C. (−∞; −1) ∪ (1; +∞). D. [0; +∞).
Câu 102. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −1.
B. m = 0.
C. m = −2.
D. m = −3.
Trang 8/11 Mã đề 1
Câu 103. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 2020.
B. 2020.
C. 13.
D. log2 13.
Câu 104. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 + 2e
1 + 2e
1 − 2e
1 − 2e
A. m =
.
B. m =
.
C. m =
.
D. m =
.
4 − 2e
4e + 2
4 − 2e
4e + 2
Câu 105. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
B. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
C. Cả ba đáp án trên.
√
D. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
Câu 106. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị nhỏ nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới
" đây?
!
5
5
A. [3; 4).
B.
;3 .
C. 2; .
D. (1; 2).
2
2
Câu 107. Dãy số nào sau đây có giới hạn khác 0?
1
sin n
.
B. √ .
A.
n
n
C.
1
.
n
D.
√
ab.
n+1
.
n
Câu 108. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.
B. Vô nghiệm.
C. 1.
D. 3.
1 + 2 + ··· + n
Câu 109. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
1
A. lim un = .
B. Dãy số un khơng có giới hạn khi n → +∞.
2
C. lim un = 0.
D. lim un = 1.
Câu 110. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó
Q0 là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số
lượng vi khuẩn đạt 100.000 con?
A. 3, 55.
B. 24.
C. 20.
D. 15, 36.
[ = 60◦ , S O
Câu 111. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S
√ BC) bằng
√
2a 57
a 57
a 57
A.
.
B.
.
C.
.
D. a 57.
19
17
19
x+1
Câu 112. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
B. 1.
C. .
D. .
A. .
2
6
3
Câu 113. Khối đa diện đều loại {3; 4} có số đỉnh
A. 6.
B. 4.
C. 10.
D. 8.
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥
Câu 114. Cho hình chóp S .ABC có BAC
(ABC). Thể
√
√ tích khối chóp S .ABC là
√
3
√
a 3
a3 2
a3 3
2
A.
.
B. 2a 2.
C.
.
D.
.
12
24
24
Câu 115. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 9.
B. 0.
C. 7.
D. 5.
log7 16
Câu 116. [1-c] Giá trị của biểu thức
bằng
15
log7 15 − log7 30
A. 4.
B. 2.
C. −4.
D. −2.
Trang 9/11 Mã đề 1
Câu 117. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ là
√ Thể tích khối chóp S 3.ABC
√
√
3
a 3
a 2
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
6
12
4
12
Câu 118. Khối đa diện đều loại {3; 5} có số mặt
A. 12.
B. 8.
C. 30.
D. 20.
Câu 119. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 6 mặt.
C. 7 mặt.
D. 8 mặt.
√
x2 + 3x + 5
Câu 120. Tính giới hạn lim
x→−∞
4x − 1
1
1
C. 1.
D. .
A. 0.
B. − .
4
4
Câu 121. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. 2n2 lần.
C. n3 lần.
D. 2n3 lần.
Câu 122. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. R.
B. (−∞; 1).
C. (0; 2).
D. (2; +∞).
Câu 123. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 6 cạnh, 4 mặt. B. 6 đỉnh, 6 cạnh, 4 mặt. C. 3 đỉnh, 3 cạnh, 3 mặt. D. 4 đỉnh, 8 cạnh, 4 mặt.
Câu 124. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với
đáy một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là
√
10a3 3
3
3
3
.
A. 10a .
B. 40a .
C. 20a .
D.
3
Câu 125. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
D. − .
A. −e.
B. − 2 .
C. − .
e
2e
e
2
Câu 126. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x − 2 ln x trên [e−1 ; e] là
A. M = e−2 − 2; m = 1.
B. M = e−2 + 1; m = 1.
−2
C. M = e + 2; m = 1.
D. M = e2 − 2; m = e−2 + 2.
Câu 127. Khối đa diện đều loại {3; 4} có số cạnh
A. 10.
B. 12.
!
1
1
1
Câu 128. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
C. 6.
D. 8.
3
.
D. 1.
2
Câu 129. Cho hình chóp S .ABCD có đáy ABCD là hình thang vuông tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
√ phẳng vng góc với (ABCD). Thể tích khối chóp
√ S .ABCD là
3
3
3
√
a 2
a 3
a 3
A.
.
B.
.
C. a3 3.
D.
.
2
4
2
Câu 130. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > −1.
B. m > 1.
C. m > 0.
D. m ≥ 0.
A. 2.
B. 0.
C.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/11 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
2. A
C
3. A
4.
5. A
6. A
7. A
8.
B
10.
B
12.
B
14.
B
9.
B
11.
13.
D
B
15.
C
16. A
17.
C
18. A
19. A
C
21.
23.
D
B
20.
C
22.
C
24.
B
D
26.
25. A
27.
B
28.
29.
B
30. A
31.
B
32. A
33.
D
B
34.
D
35.
C
36.
37.
C
38.
39.
C
40.
B
42.
B
41. A
43.
C
B
D
44. A
45. A
46.
47.
D
C
48. A
49. A
50.
51. A
52.
53. A
54. A
B
D
55.
B
56.
57.
B
58.
C
60.
C
59. A
61.
63.
C
B
65. A
67.
D
62.
D
64.
D
66. A
68.
C
1
B
69.
D
70.
71.
D
72.
B
74.
B
75. A
76.
B
77. A
78.
C
80.
C
C
73.
79.
D
81.
C
82.
83.
C
84. A
D
B
85.
B
86. A
87.
B
88.
C
90.
C
D
89.
93.
D
92.
C
91.
94. A
B
95. A
97.
D
99.
D
96.
D
98.
D
100. A
101. A
C
102.
103.
D
104.
105.
D
106.
107.
D
108. A
D
B
110.
109. A
111.
D
112.
C
113. A
114.
C
115. A
116.
C
C
117.
118.
D
D
119. A
120.
121. A
122.
C
123. A
124.
C
125.
127.
129.
B
126. A
C
128.
B
D
130. A
2
D