Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn tập toán thptqg c4 (103)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (113.55 KB, 5 trang )

Tài liệu Free pdf LATEX

BÀI TẬP ƠN TẬP MƠN TỐN THPT

(Đề thi có 4 trang)

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1

d = 60◦ . Đường chéo
Câu 1. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0





2a3 6
a3 6
4a3 6
3
A. a 6.
B.
.
C.
.
D.
.
3
3
3


d = 30◦ , biết S BC là tam giác đều
Câu 2. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.
.
C.
.
D.
.
A.
16
13
9
26
Câu 3. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó là:
A. 27cm3 .
B. 64cm3 .
C. 72cm3 .
D. 46cm3 .
Câu 4. Khối đa diện đều loại {5; 3} có số mặt
A. 20.
B. 30.

Câu 5. [2-c] Giá trị lớn nhất của hàm số f (x) = e
A. e2 .
B. e.

C. 8.

D. 12.

x3 −3x+3

trên đoạn [0; 2] là
C. e3 .

D. e5 .

Câu 6. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. 3n3 lần.
B. n lần.
C. n2 lần.
D. n3 lần.
Câu 7. Khối đa diện đều loại {4; 3} có số cạnh
A. 12.
B. 10.

C. 30.

D. 20.

Câu 8. !Dãy số nào sau đây có giới
!n hạn là 0?

n
4
1
A.
.
B.
.
e
3

!n
5
C. − .
3

!n
5
D.
.
3

Câu 9. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (1; +∞).
!
1
C. Hàm số nghịch biến trên khoảng ; 1 .
3

!
1

B. Hàm số đồng biến trên khoảng ; 1 .
3
!
1
D. Hàm số nghịch biến trên khoảng −∞; .
3

Câu 10. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m < 3.
C. m ≤ 3.
D. m > 3.
log 2x
Câu 11. [1229d] Đạo hàm của hàm số y =

x2
1
1 − 4 ln 2x
1 − 2 log 2x
1 − 2 ln 2x
A. y0 = 3
.
D. y0 = 3
.
B. y0 =
.
C. y0 =
.
3

3
2x ln 10
2x ln 10
x
x ln 10
Câu 12.
đề nào sau đây sai?
Z [1233d-2] Mệnh
Z
k f (x)dx = k

A.

f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
B.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
Z
C.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
D.
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z


Trang 1/4 Mã đề 1


Câu 13. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
ln 2
A. 2.
B. .
C. 1.
D.
.
2
2
Câu 14. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 15. [3-12217d] Cho hàm số y = ln
x+1
0
y
0
y
A. xy = e − 1.
B. xy = e + 1.
C. xy0 = −ey − 1.
D. xy0 = −ey + 1.

Câu 16. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
Thể tích khối chóp S .ABC √là
√ với đáy và S C = a 3.3 √

3
a 3
a 6
2a3 6
a3 3
A.
.
B.
.
C.
.
D.
.
2
12
9
4
Câu 17. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều đúng.
B. Chỉ có (I) đúng.


C. Cả hai đều sai.

D. Chỉ có (II) đúng.

[ = 60◦ , S O
Câu 18. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.
√ BC) bằng

√ Khoảng cách từ O đến (S

a 57
2a 57
a 57
A. a 57.
.
C.
.
D.
.
B.
19
17
19
2x + 1
Câu 19. Tính giới hạn lim
x→+∞ x + 1
1
A. 1.
B. −1.

C. 2.
D. .
2
Câu 20. Khối đa diện đều loại {4; 3} có số mặt
A. 10.
B. 6.
C. 8.
D. 12.
Câu 21.
√ [4-1245d] Trong tất cả√các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
A. 10.
B. 2.
C. 1.
D. 2.
x2 − 12x + 35
Câu 22. Tính lim
x→5
25 − 5x
2
2
A. .
B. +∞.
C. −∞.
D. − .
5
5

Câu 23. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vơ số.

B. 62.
C. 63.
D. 64.
Câu 24. Giá√trị cực đại của hàm số y√= x3 − 3x2 − 3x + 2

A. −3 − 4 2.
B. 3 + 4 2.
C. −3 + 4 2.


D. 3 − 4 2.




x=t




Câu 25. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)




z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
Trang 2/4 Mã đề 1



9
9
A. (x + 3)2 + (y + 1)2 + (z − 3)2 = .
B. (x + 3)2 + (y + 1)2 + (z + 3)2 = .
4
4
9
9
2
2
2
2
2
2
D. (x − 3) + (y − 1) + (z − 3) = .
C. (x − 3) + (y + 1) + (z + 3) = .
4
4
Câu 26. Khối đa diện đều loại {3; 3} có số mặt
A. 2.
B. 5.
C. 4.
D. 3.
7n2 − 2n3 + 1
Câu 27. Tính lim 3
3n + 2n2 + 1
2
7

A. 0.
B. - .
C. 1.
D. .
3
3
Câu 28. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn cạnh.
B. Ba cạnh.
C. Năm cạnh.
D. Hai cạnh.
q
2
Câu 29. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 2].
B. m ∈ [0; 1].
C. m ∈ [0; 4].
D. m ∈ [−1; 0].
2n − 3
Câu 30. Tính lim 2
bằng
2n + 3n + 1
A. 1.
B. 0.
C. −∞.
D. +∞.
Câu 31. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình

phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 4.
B. 0, 2.
C. 0, 5.
D. 0, 3.
Câu 32. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun √
z.



5 13
.
B. 26.
C. 2.
D. 2 13.
A.
13
Câu 33. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 6.
B. −1.
C. 2.
Câu 34. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {4; 3}.
B. {3; 4}.
C. {3; 3}.


4n2 + 1 − n + 2
Câu 35. Tính lim

bằng
2n − 3
3
A. .
B. 1.
C. 2.
2

D. 1.
D. {5; 3}.

D. +∞.

Câu 36. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,
√ N, P bằng



20 3
14 3
C.
A.
.
B. 6 3.
.
D. 8 3.
3
3

2
Câu 37. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3 + (m√
+ 1)2 x trên [0; 1] bằng 2√
A. m = ±3.
B. m = ±1.
C. m = ± 3.
D. m = ± 2.

Câu 38. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 6510 m.
B. 2400 m.
C. 1134 m.
D. 1202 m.
Câu 39. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {3}.
B. {5; 2}.
C. {2}.
D. {5}.
Trang 3/4 Mã đề 1


12 + 22 + · · · + n2
Câu 40. [3-1133d] Tính lim
n3
2
1
A. .
B. 0.
C. .

3
3
3
2
Câu 41. Điểm cực đại của đồ thị hàm số y = 2x − 3x − 2 là
A. (0; −2).
B. (−1; −7).
C. (1; −3).

D. +∞.
D. (2; 2).

π
Câu 42. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu √
thức T = a + b 3.

A. T = 3 3 + 1.
B. T = 4.
C. T = 2.
D. T = 2 3.
√3
4
Câu 43. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
7
5
5
2

A. a 3 .
B. a 8 .
C. a 3 .
D. a 3 .
x−2 x−1
x
x+1
Câu 44. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3].
B. (−3; +∞).
C. (−∞; −3).
D. [−3; +∞).
Câu 45. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
.
B. 68.

C. 34.
D.
A. 5.
17
Câu 46.√Thể tích của tứ diện đều √
cạnh bằng a


a3 2
a3 2
a3 2
a3 2
A.
.
B.
.
C.
.
D.
.
2
4
12
6
Câu 47. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≤ .

B. m ≥ .
C. m < .
D. m > .
4
4
4
4

2
3
Câu 48. [2] Phương trình log4 (x + 1) + 2 = log √2 4 − x + log8 (4 + x) có tất cả bao nhiêu nghiệm?
A. 2 nghiệm.
B. 3 nghiệm.
C. 1 nghiệm.
D. Vơ nghiệm.
Câu 49. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−1; 3].
B. [1; +∞).
C. (−∞; −3].
D. [−3; 1].
Câu 50. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 27.
B. 10.
C. 3.

D. 12.

- - - - - - - - - - HẾT- - - - - - - - - -


Trang 4/4 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A

2.

3. A

4.

D

6.

D

D

5.
7. A

8.

9.

B


10. A

C
D

11.

B

12. A
D

13. A

14.

15. A

16.

B

18.

B
B

17.


D

19.

C

20.

21.

C

22. A

23.

B

25.
27.

C
B

24.

C

26.


C

28.

B
B

29.

D

30.

31.

D

32. A
34.

33. A
35.

B

36.

37.

B


38. A

39.

D

B

40.

41. A

42.

43.

D

44. A

45.

D

46.

47. A
49.


D

C
B
C

48. A
D

50.

1

C



×