Free LATEX
BÀI TẬP TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút
Mã đề thi 1
π π
Câu 1. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. −1.
B. 7.
C. 1.
D. 3.
Câu 2. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất của hàm số. Khi đó tổng
√
√M + m
√
A. 16.
B. 8 3.
C. 7 3.
D. 8 2.
Câu 3. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 7.
B. 5.
C. 0.
D. 9.
Câu 4. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Bốn tứ diện đều và một hình chóp tam giác đều.
B. Một tứ diện đều và bốn hình chóp tam giác đều.
C. Năm hình chóp tam giác đều, khơng có tứ diện đều.
D. Năm tứ diện đều.
Câu 5.
Z Trong các khẳng định sau, khẳng định nào sai? Z
1
A.
dx = ln |x| + C, C là hằng số.
B.
dx = x + C, C là hằng số.
x
Z
Z
xα+1
+ C, C là hằng số.
C.
0dx = C, C là hằng số.
D.
xα dx =
α+1
Câu 6. Cho z là √
nghiệm của phương trình √x2 + x + 1 = 0. Tính P = z4 + 2z3 − z
−1 − i 3
−1 + i 3
A. P =
.
B. P =
.
C. P = 2i.
D. P = 2.
2
2
x2 − 5x + 6
Câu 7. Tính giới hạn lim
x→2
x−2
A. 5.
B. 0.
C. 1.
D. −1.
Câu 8. Trong các khẳng định sau, khẳng định nào sai? √
A. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
B. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
C. Cả ba đáp án trên.
D. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
Câu 9. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích hình
hộp đã √cho là√1728. Khi đó, các kích thước của hình hộp là
A. 2 3, 4 3, 38.
B. 6, 12, 24.
C. 8, 16, 32.
D. 2, 4, 8.
1 + 2 + ··· + n
Câu 10. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
1
A. Dãy số un khơng có giới hạn khi n → +∞.
B. lim un = .
2
C. lim un = 1.
D. lim un = 0.
Câu 11. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 27.
B. 12.
C.
.
D. 18.
2
Trang 1/10 Mã đề 1
Câu 12.
√ của |z|
√ [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn nhất
B. 1.
C. 2.
D. 5.
A. 3.
1
Câu 13. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
A. xy0 = −ey + 1.
B. xy0 = ey − 1.
C. xy0 = ey + 1.
D. xy0 = −ey − 1.
Câu 14. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất khơng đổi và người đó khơng rút tiền ra?
A. 13 năm.
B. 11 năm.
C. 10 năm.
D. 12 năm.
n−1
Câu 15. Tính lim 2
n +2
A. 2.
B. 1.
C. 0.
D. 3.
Câu 16.
đề nào sai? Z
Z Cho hàm sốZf (x), g(x) liên tục trên R. Trong cácZmệnh đề sau, mệnh Z
A.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
B.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Z
Z
Z
Z
Z
Z
C.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
D.
f (x)g(x)dx =
f (x)dx g(x)dx.
√
Câu 17. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là
√
3
√
a 3
a3 3
a3
3
A.
.
B. a 3.
C.
.
D.
.
3
12
4
Câu 18. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; 2).
B. Hàm số nghịch biến trên khoảng (0; 2).
C. Hàm số đồng biến trên khoảng (0; +∞).
D. Hàm số nghịch biến trên khoảng (−∞; 2).
Câu 19. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
Câu 20. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,
√
√ N, P bằng
√
√
14 3
20 3
.
B. 6 3.
C.
.
D. 8 3.
A.
3
3
x+1
Câu 21. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
A. 1.
B. .
C. .
D. .
6
2
3
Câu 22. Khối đa diện đều loại {3; 3} có số cạnh
A. 5.
B. 6.
C. 4.
D. 8.
Câu 23. Khối đa diện đều loại {3; 4} có số mặt
A. 12.
B. 10.
C. 6.
D. 8.
mx − 4
Câu 24. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 34.
B. 26.
C. 67.
D. 45.
Câu 25. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng
√
√
√
a 6
a 6
a 6
A.
.
B.
.
C. a 6.
D.
.
6
3
2
Trang 2/10 Mã đề 1
1 − 2n
Câu 26. [1] Tính lim
bằng?
3n + 1
1
2
A. .
B. − .
C. 1.
3
3
Câu 27.√Thể tích của tứ diện đều √
cạnh bằng a
√
a3 2
a3 2
a3 2
A.
.
B.
.
C.
.
2
12
4
Câu 28. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 + 2e
1 + 2e
1 − 2e
A. m =
.
B. m =
.
C. m =
.
4e + 2
4 − 2e
4e + 2
D.
2
.
3
√
a3 2
D.
.
6
1 − 2e
.
4 − 2e
[ = 60◦ , S O
Câu 29. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√
√ với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S BC) bằng
√
2a 57
a 57
a 57
D.
A.
.
B.
.
C. a 57.
.
17
19
19
Câu 30. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {1}.
B. D = R \ {0}.
C. D = R.
D. D = (0; +∞).
D. m =
Câu 31. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng
√ góc với đáy, S C = a3 √3. Thể tích khối chóp S 3.ABCD là
3
a 3
a
a 3
.
B.
.
C.
.
D. a3 .
A.
3
9
3
3
2
Câu 32. Tập xác định của hàm số f (x) = −x + 3x − 2 là
A. (−∞; +∞).
B. [−1; 2).
C. (1; 2).
D. [1; 2].
!
!
!
x
4
1
2
2016
Câu 33. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
.
D. T = 1008.
A. T = 2016.
B. T = 2017.
C. T =
2017
Câu 34. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 1.
B. 3.
C. Vô số.
D. 2.
Câu 35. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
. Khi đó thể tích khối lăng trụ là
BC là
4
√
√
√
√
a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
24
12
36
6
Câu 36. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + 3.
B. T = 4 + .
C. T = e + 1.
D. T = e + .
e
e
Câu 37. Cho số phức z thỏa mãn |z +
√ 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.
A. |z| = 17.
B. |z| = 10.
C. |z| = 17.
D. |z| = 10.
Câu 38. Khối chóp ngũ giác có số cạnh là
A. 9 cạnh.
B. 12 cạnh.
2n2 − 1
Câu 39. Tính lim 6
3n + n4
2
A. .
B. 2.
3
C. 11 cạnh.
D. 10 cạnh.
C. 1.
D. 0.
Trang 3/10 Mã đề 1
[ = 60◦ , S A ⊥ (ABCD).
Câu 40. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh
√ S C là a. Thể tích khối chóp S .ABCD là
√
3
3
√
a 2
a 3
a3 2
3
.
B.
.
C. a 3.
.
A.
D.
6
4
12
Câu 41. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 6 mặt.
C. 8 mặt.
√
Câu 42. [1] Biết log6 a = 2 thì log6 a bằng
A. 4.
B. 6.
C. 36.
D. 10 mặt.
D. 108.
Câu 43. [1] Giá trị của biểu thức 9log3 12 bằng
A. 2.
B. 4.
C. 24.
D. 144.
x−3 x−2 x−1
x
Câu 44. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2].
B. [2; +∞).
C. (2; +∞).
D. (−∞; 2).
Câu 45. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 4 mặt.
C. 6 mặt.
D. 3 mặt.
Câu 46. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 8 năm.
B. 7 năm.
C. 10 năm.
D. 9 năm.
√3
4
Câu 47. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
2
5
5
7
A. a 3 .
B. a 8 .
C. a 3 .
D. a 3 .
Câu 48. Khối đa diện đều loại {3; 4} có số cạnh
A. 6.
B. 10.
C. 12.
D. 8.
Câu 49. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai ngun hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Khơng có câu nào B. Câu (II) sai.
C. Câu (I) sai.
sai.
Câu 50. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 4 − 2 ln 2.
B. 1.
C. −2 + 2 ln 2.
D. Câu (III) sai.
D. e.
Câu 51. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 120 cm2 .
C. 1200 cm2 .
D. 160 cm2 .
Câu 52. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 6 mặt.
C. 7 mặt.
Z 2
ln(x + 1)
Câu 53. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. 3.
B. 1.
C. 0.
D. 9 mặt.
D. −3.
Trang 4/10 Mã đề 1
Câu 54. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 8 đỉnh, 10 cạnh, 6 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 55. Trong các mệnh đề dưới đây, mệnh đề nào!sai?
un
A. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
!vn
un
= +∞.
B. Nếu lim un = a > 0 và lim vn = 0 thì lim
vn
!
un
= −∞.
C. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
vn
D. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
Câu 56. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
Câu 57. [2-c] (Minh họa 2019) Ơng A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 25 triệu đồng.
B. 2, 22 triệu đồng.
C. 2, 20 triệu đồng.
D. 3, 03 triệu đồng.
Câu 58. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α
aα
B. aα bα = (ab)α .
C. aα+β = aα .aβ .
D. β = a β .
a
√
x2 + 3x + 5
Câu 59. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. .
B. − .
C. 0.
D. 1.
4
4
Câu 60. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 18 lần.
B. Tăng gấp 3 lần.
C. Tăng gấp 27 lần.
D. Tăng gấp 9 lần.
√
Câu 61. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) √
bằng
√
√
a 38
3a 38
3a 58
3a
A.
.
B.
.
C.
.
D.
.
29
29
29
29
Câu 62. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≤ 3.
B. −3 ≤ m ≤ 3.
C. m ≥ 3.
D. −2 ≤ m ≤ 2.
A. aαβ = (aα )β .
Câu 63. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 15, 36.
B. 20.
C. 3, 55.
D. 24.
Câu 64. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
9
18
15
6
Trang 5/10 Mã đề 1
!
x+1
Câu 65. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2017
4035
2016
.
B.
.
C. 2017.
D.
.
A.
2017
2018
2018
x−2
Câu 66. Tính lim
x→+∞ x + 3
2
A. 1.
B. −3.
C. 2.
D. − .
3
x−3 x−2
x−3
x−2
Câu 67. [12212d] Số nghiệm của phương trình 2 .3 − 2.2 − 3.3 + 6 = 0 là
A. Vô nghiệm.
B. 3.
C. 2.
D. 1.
Câu 68. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
S .ABCD là
của AD, biết
a 5. Thể tích khối chóp √
√ S H ⊥ (ABCD), S A =
3
3
3
4a 3
4a
2a 3
2a3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
4x + 1
Câu 69. [1] Tính lim
bằng?
x→−∞ x + 1
A. 2.
B. −1.
C. 4.
D. −4.
Câu 70. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC) một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √
√
a3 3
a3 3
a3 3
a3
.
B.
.
C.
.
D.
.
A.
4
4
12
8
√
Câu 71. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị
" nhỏ! nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới đây?
5
5
;3 .
A. 2; .
B.
C. (1; 2).
D. [3; 4).
2
2
Câu 72. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; −8).
B. A(−4; −8)(.
C. A(−4; 8).
D. A(4; 8).
Câu 73. [1] Đạo hàm của hàm số y = 2 x là
1
A. y0 = 2 x . ln x.
B. y0 = x
.
2 . ln x
C. y0 = 2 x . ln 2.
D. y0 =
1
.
ln 2
Câu 74. [2]√Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 8 √
A. m = ± 3.
B. m = ±3.
C. m = ±1.
D. m = ± 2.
2n − 3
Câu 75. Tính lim 2
bằng
2n + 3n + 1
A. 0.
B. 1.
C. −∞.
D. +∞.
Câu 76. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {5; 3}.
B. {3; 5}.
C. {3; 4}.
D. {4; 3}.
Câu 77. Tứ diện đều thuộc loại
A. {3; 4}.
B. {3; 3}.
D. {4; 3}.
C. {5; 3}.
Câu 78. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối√chóp S .ABMN là
√
√
√
a3 3
2a3 3
4a3 3
5a3 3
A.
.
B.
.
C.
.
D.
.
2
3
3
3
Câu 79. Khối đa diện đều loại {3; 4} có số đỉnh
A. 8.
B. 4.
C. 6.
D. 10.
Trang 6/10 Mã đề 1
d = 30◦ , biết S BC là tam giác đều
Câu 80. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.
.
C.
.
D.
.
A.
16
9
26
13
9t
Câu 81. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. Vơ số.
B. 1.
C. 0.
D. 2.
Câu 82. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e2 − 2; m = e−2 + 2.
B. M = e−2 + 2; m = 1.
C. M = e−2 + 1; m = 1.
D. M = e−2 − 2; m = 1.
Câu 83. [1] Tập
! xác định của hàm số y! = log3 (2x + 1) là
!
1
1
1
A. −∞; − .
B.
; +∞ .
C. − ; +∞ .
2
2
2
Câu 84. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog
√
a
5
√
!
1
D. −∞; .
2
bằng
1
.
5
Câu 85. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng
√
√
√
a 2
a 2
A.
.
B. a 3.
C. a 2.
D.
.
3
2
A. 5.
B. 25.
C.
5.
D.
Câu 86. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là
√
√
a3
a3 3
a3 3
3
.
C.
.
D.
.
A. a .
B.
6
3
2
!
1
1
1
+
+ ··· +
Câu 87. Tính lim
1.2 2.3
n(n + 1)
3
A. 0.
B. 2.
C. 1.
D. .
2
Câu 88. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
Câu 89. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là 4.
B. Phần thực là 4, phần ảo là 1.
C. Phần thực là −1, phần ảo là −4.
D. Phần thực là 4, phần ảo là −1.
Câu 90. Phát biểu nào sau đây là sai?
1
A. lim √ = 0.
n
C. lim un = c (Với un = c là hằng số).
1
= 0 với k > 1.
nk
D. lim qn = 1 với |q| > 1.
B. lim
1
bằng
Câu 91. [1] Giá trị của biểu thức log √3
10
1
A. .
B. −3.
3
1
C. − .
3
D. 3.
Câu 92. Khối đa diện đều loại {4; 3} có số cạnh
A. 20.
B. 30.
C. 10.
D. 12.
Trang 7/10 Mã đề 1
1 − n2
Câu 93. [1] Tính lim 2
bằng?
2n + 1
1
1
A. .
B. .
3
2
Câu 94. Khối đa diện đều loại {3; 3} có số đỉnh
A. 5.
B. 4.
Câu 95. [1] Tập xác định của hàm số y = 4
A. D = R.
B. D = (−2; 1).
x2 +x−2
1
C. − .
2
D. 0.
C. 3.
D. 2.
C. D = R \ {1; 2}.
D. D = [2; 1].
là
√
Câu 96. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√
√
√
√ cho là
3
πa3 3
πa3 3
πa3 6
πa 3
.
B. V =
.
C. V =
.
D. V =
.
A. V =
6
3
2
6
Câu 97. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tứ giác.
B. Một hình chóp tứ giác và một hình chóp ngũ giác.
C. Hai hình chóp tam giác.
D. Một hình chóp tam giác và một hình chóp tứ giác.
Câu 98. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 3}.
B. {5; 3}.
C. {4; 3}.
1
Câu 99. Hàm số y = x + có giá trị cực đại là
x
A. −1.
B. 1.
C. −2.
D. {3; 4}.
D. 2.
!
3n + 2
2
Câu 100. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 5.
B. 2.
C. 4.
D. 3.
Câu 101. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.
C. Khối 20 mặt đều.
Câu 102. Thể tích của khối lăng
√ trụ tam giác đều có cạnh√bằng 1 là:
3
3
3
A. .
B.
.
C.
.
4
2
4
√
√
Câu 103. √Tìm giá trị lớn nhất của
hàm
số
y
=
x
+
3
+
6−x
√
A. 2 + 3.
B. 2 3.
C. 3.
D. Khối bát diện đều.
√
3
D.
.
12
√
D. 3 2.
Câu 104. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
ab
1
1
A. 2
.
B.
.
C.
.
D.
.
√
√
√
a + b2
a2 + b2
a2 + b2
2 a2 + b2
Câu 105. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 22.
B. y(−2) = 6.
C. y(−2) = −18.
D. y(−2) = 2.
Câu 106. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 1587 m.
B. 387 m.
C. 25 m.
D. 27 m.
Trang 8/10 Mã đề 1
tan x + m
Câu 107. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
π
0; .
4
A. [0; +∞).
B. (−∞; −1) ∪ (1; +∞). C. (1; +∞).
D. (−∞; 0] ∪ (1; +∞).
Câu 108. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị nhỏ nhất trên K.
C. f (x) xác định trên K.
B. f (x) liên tục trên K.
D. f (x) có giá trị lớn nhất trên K.
Câu 109. Tính diện tích hình phẳng giới hạn bởi các đường y = xe x , y = 0, x = 1. √
3
1
3
A. .
B. 1.
C. .
D.
.
2
2
2
x−3
bằng?
Câu 110. [1] Tính lim
x→3 x + 3
A. 0.
B. −∞.
C. +∞.
D. 1.
Câu 111. Tính mơ đun của số phức√z biết (1 + 2i)z2 = 3 + 4i. √
4
A. |z| = 5.
B. |z| = 5.
C. |z| = 5.
√
D. |z| = 2 5.
Câu 112. Bát diện đều thuộc loại
A. {3; 3}.
B. {4; 3}.
D. {3; 4}.
C. {5; 3}.
Câu 113. Giá trị cực đại của hàm số y = x − 3x + 4 là
A. −1.
B. 2.
C. 1.
D. 6.
x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
Câu 114. [3-1214d] Cho hàm số y =
x+2
tam giác
B thuộc (C), đoạn thẳng √
AB có độ dài bằng
√ đều ABI có hai đỉnh A, √
A. 2 3.
B. 2 2.
C. 6.
D. 2.
x+2
Câu 115. Tính lim
bằng?
x→2
x
A. 0.
B. 3.
C. 2.
D. 1.
3
Câu 116. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
A. lim [ f (x) − g(x)] = a − b.
B. lim [ f (x) + g(x)] = a + b.
x→+∞
x→+∞
f (x) a
C. lim [ f (x)g(x)] = ab.
D. lim
= .
x→+∞
x→+∞ g(x)
b
Câu 117. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−3; 1].
B. (−∞; −3].
C. [1; +∞).
D. [−1; 3].
!4x
!2−x
2
3
Câu 118. Tập các số x thỏa mãn
≤
là
3
2
#
#
"
!
"
!
2
2
2
2
A. −∞; .
B. −∞; .
C. − ; +∞ .
D.
; +∞ .
5
3
3
5
3
Câu 119. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e2 .
B. e5 .
C. e3 .
D. e.
x+3
Câu 120. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 1.
B. 3.
C. Vô số.
D. 2.
Câu 121. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một hoặc hai.
B. Có hai.
C. Khơng có.
D. Có một.
Trang 9/10 Mã đề 1
Câu 122. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
B. − < m < 0.
C. m ≤ 0.
D. m ≥ 0.
A. m > − .
4
4
Câu 123. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9
tháng thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không
thay đổi trong thời gian gửi.
A. 0, 5%.
B. 0, 6%.
C. 0, 8%.
D. 0, 7%.
Câu 124. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích khối chóp S .ABCD là
√
√
√
a3 3
2a3 3
a3 3
3
A.
.
B. a 3.
C.
.
D.
.
3
3
6
1
Câu 125. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (−∞; 3).
B. (−∞; 1) và (3; +∞). C. (1; +∞).
D. (1; 3).
√3
Câu 126. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga a bằng
1
1
A. −3.
B. − .
C. 3.
D. .
3
3
1
Câu 127. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 < m ≤ 1.
B. 0 ≤ m ≤ 1.
C. 2 < m ≤ 3.
D. 2 ≤ m ≤ 3.
Câu 128. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
.
B. 5.
C. 7.
D. .
A.
2
2
8
Câu 129. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 81.
B. 64.
C. 96.
D. 82.
Câu 130. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 3).
B. (2; 4; 6).
C. (1; 3; 2).
D. (2; 4; 4).
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
C
1.
2. A
3.
D
4.
5.
D
6.
7.
D
8. A
9.
10.
B
D
11.
13.
C
17. A
C
B
23.
D
14.
D
16.
D
20.
B
22.
B
26.
B
29.
D
31.
C
33.
C
30.
C
32. A
34.
D
B
36. A
37.
B
38.
39.
B
28.
35.
41.
C
24. A
25. A
27.
B
18. A
19.
21.
D
12.
B
15.
B
D
40.
D
D
B
42. A
B
43.
D
44.
45.
D
46.
B
D
47. A
48.
49. A
50.
D
51. A
52.
D
53.
D
54.
B
B
55.
B
56.
57.
B
58.
59.
B
60.
61.
D
C
62.
B
63. A
65.
B
66. A
67.
C
69.
C
68.
C
C
B
1
70.
D
71.
72.
D
73.
74.
D
75. A
76.
B
77.
78. A
C
B
79.
80.
D
81.
82.
D
83.
84.
B
D
C
D
85.
B
D
86.
88.
C
87.
C
89.
C
D
90.
D
91.
C
92.
D
93.
C
94.
B
95. A
96.
B
97.
C
98.
B
99.
C
C
100.
C
101.
102.
C
103.
104.
B
106.
108.
D
B
110. A
112.
105.
C
107.
C
109.
B
111.
B
113.
D
114. A
D
118.
C
117. A
C
119.
B
121. A
B
122. A
123.
124. A
125.
126.
D
127.
128.
D
129. A
130.
D
115.
116.
120.
D
B
2
D
B
C