Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn tập toán thptqg 1 (161)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (112.03 KB, 5 trang )

Tài liệu Free pdf LATEX

BÀI TẬP ƠN TẬP MƠN TỐN THPT

(Đề thi có 4 trang)

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1
2

Câu 1. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 2 − log2 3.
B. 1 − log2 3.
C. 3 − log2 3.

D. 1 − log3 2.

Câu 2. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích hình
hộp đã cho là 1728. Khi đó, các kích thước của hình hộp là√

D. 2, 4, 8.
A. 8, 16, 32.
B. 6, 12, 24.
C. 2 3, 4 3, 38.
d = 60◦ . Đường chéo
Câu 3. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vuông tại A, AC = a, ACB
0
0 0
0 0

BC của mặt bên (BCC B ) tạo với mặt phẳng (AA C C) một góc 30 . Thể tích của khối lăng trụ ABC.A0 B0C 0







a3 6
4a3 6
2a3 6
.
B.
.
C.
.
D. a3 6.
A.
3
3
3
!
3n + 2
2
+ a − 4a = 0. Tổng các phần tử của
Câu 4. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
n+2
S bằng
A. 2.
B. 4.
C. 3.
D. 5.
Câu 5. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương

ứng sẽ:
A. Tăng gấp đơi.
B. Tăng gấp 4 lần.
C. Tăng gấp 8 lần.
D. Tăng gấp 6 lần.
!
5 − 12x
Câu 6. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. 3.
B. 1.
C. 2.
D. Vô nghiệm.
Câu 7. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (0; 2).
B. R.
C. (2; +∞).

D. (−∞; 1).

Câu 8. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là



5a3 3
a3 3

4a3 3
2a3 3
.
B.
.
C.
.
D.
.
A.
3
3
2
3
Câu 9. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 1).
B. Hàm số nghịch biến trên khoảng (−∞; 0).
C. Hàm số đồng biến trên khoảng (1; 2).
D. Hàm số nghịch biến trên khoảng (1; +∞).
Câu 10. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 160 cm2 .
C. 1200 cm2 .
D. 120 cm2 .
[ = 60◦ , S O
Câu 11. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.√Khoảng cách từ O đến (S
√ BC) bằng



2a 57
a 57
a 57
A. a 57.
B.
.
C.
.
D.
.
19
17
19
Câu 12. Khối đa diện đều loại {5; 3} có số cạnh
A. 30.
B. 12.
C. 20.
D. 8.
1
Câu 13. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
A. xy0 = ey − 1.
B. xy0 = −ey − 1.
C. xy0 = −ey + 1.
D. xy0 = ey + 1.
Trang 1/4 Mã đề 1



log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m > 4.
B. m < 0 ∨ m = 4.
C. m < 0.
D. m ≤ 0.
1
Câu 15. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 2.
B. 1.
C. 4.
D. 3.
Câu 14. [1226d] Tìm tham số thực m để phương trình

Câu 16. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình tam giác.
B. Hình chóp.
C. Hình lăng trụ.

D. Hình lập phương.

Câu 17. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tứ giác.
B. Một hình chóp tứ giác và một hình chóp ngũ giác.

C. Hai hình chóp tam giác.
D. Một hình chóp tam giác và một hình chóp tứ giác.
Câu 18. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a 3
a
B. .
C.
.
D. a.
A. .
2
3
2


Câu 19. Phần thực và √
phần ảo của số phức
z
=
2

1

3i lần lượt √l


B. Phần thực là √2 − 1, phần ảo là −√ 3.

A. Phần thực là 1√− 2, phần ảo là −√ 3.
C. Phần thực là 2 − 1, phần ảo là 3.
D. Phần thực là 2, phần ảo là 1 − 3.
Câu 20. Khối đa diện đều loại {3; 3} có số cạnh
A. 8.
B. 4.

C. 6.

Câu 21. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 2.
B. 0.
C. 3.

D. 5.
D. 1.

Câu 22. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 23. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng là hình lăng trụ đều.
B. Hình lăng trụ tứ giác đều là hình lập phương.
C. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
9x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9x + 3

1
A. 2.
B. 1.
C. −1.
D. .
2
Câu 25. Khối đa diện đều loại {3; 3} có số mặt
A. 3.
B. 4.
C. 5.
D. 2.
Câu 24. [2-c] Cho hàm số f (x) =

Câu 26. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là

3
3
3

a 6
a
15
a 5
A.
.
B.
.
C. a3 6.

D.
.
3
3
3
Câu 27. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
1
A.
.
B. .
C. 1.
D. 2.
2
2
Trang 2/4 Mã đề 1


Câu 28. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √

a3 3
a3 3
a3 3
a3
A.
.
B.
.

C.
.
D.
.
8
12
4
4
Câu 29. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường



√ thẳng BD bằng
a b2 + c2
b a2 + c2
abc b2 + c2
c a2 + b2
.
B. √
.
C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2

a2 + b2 + c2


Câu 30.
Tìm
giá
trị
lớn
nhất
của
hàm
số
y
=
x
+
3
+
6 −√x


A. 2 3.
B. 3.
C. 2 + 3.
D. 3 2.
Câu 31. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m , 0.
B. m = 0.
C. m < 0.


D. m > 0.

Câu 32. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d song song với (P).
B. d ⊥ P.
C. d nằm trên P.
D. d nằm trên P hoặc d ⊥ P.
Câu 33. Hàm số nào sau đây khơng có cực trị
x−2
.
B. y = x3 − 3x.
A. y =
2x + 1
x+2
Câu 34. Tính lim
bằng?
x→2
x
A. 2.
B. 0.

C. y = x4 − 2x + 1.

1
D. y = x + .
x

C. 1.

D. 3.


Câu 35. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 4 mặt.
C. 6 mặt.

D. 3 mặt.

Câu 36. Bát diện đều thuộc loại
A. {4; 3}.
B. {3; 4}.

D. {5; 3}.

C. {3; 3}.

Câu 37. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
A. 1.
B. .
C. .
D. 3.
2
2
Câu 38. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng số cạnh của khối chóp.
B. Số đỉnh của khối chóp bằng 2n + 1.
C. Số cạnh của khối chóp bằng 2n.

D. Số mặt của khối chóp bằng 2n+1.
Câu 39. Cho số phức z thỏa mãn |z +
√ 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.
A. |z| = 17.
B. |z| = 17.
C. |z| = 10.
D. |z| = 10.

Câu 40. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng



3a 58
3a 38
a 38
3a
A.
.
B.
.
C.
.
D.
.
29
29
29
29

Câu 41. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn cạnh.
B. Năm cạnh.
C. Hai cạnh.

D. Ba cạnh.
Trang 3/4 Mã đề 1


1
Câu 42. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 luôn đồng biến trên
3

một đoạn có độ dài bằng 24.
A. m = 4.
B. −3 ≤ m ≤ 4.
C. m = −3.
D. m = −3, m = 4.
1
Câu 43. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 < m < −1.
B. (−∞; −2) ∪ (−1; +∞). C. −2 ≤ m ≤ −1.
D. (−∞; −2] ∪ [−1; +∞).
Câu 44. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m ≥ 0.

B. m > − .
C. m ≤ 0.
D. − < m < 0.
4
4
2
Câu 45. Giá trị giới hạn lim (x − x + 7) bằng?
x→−1
A. 7.
B. 5.
C. 0.
D. 9.
8
Câu 46. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 81.
B. 82.
C. 96.
D. 64.
! x3 −3mx2 +m
1
Câu 47. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m ∈ (0; +∞).
B. m ∈ R.
C. m = 0.
D. m , 0.
2n + 1

Câu 48. Tính giới hạn lim
3n + 2
1
3
2
B. .
C. 0.
D. .
A. .
3
2
2
2

Câu 49. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 3.
B. 5.
C. 2.

D. 4.

3a
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

2a
a
a

a 2
A.
.
B. .
C. .
D.
.
3
4
3
3
Câu 50. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 4/4 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A
D

3.
C

5.
7. A


B

4.

B

6.

B

8.

9. A
D

12. A

13. A

14.
18.

C

19.

B

20.


21.

B

22. A
C

23.

B

16. A

B

17.

25.

C

10. A

11.
15.

2.

B


27.

D

D
C

24.

B

26.

B

28. A
30.

D

31. A

32.

D

33. A

34. A


29.

36.

B

B

38.

C

C

39.

C

41.

40. A
42.
44.

37.

D

43.


D
C

45.

B

46. A

47.

48. A

49.

50. A

1

D
C
D



×