Tải bản đầy đủ (.pdf) (12 trang)

Bài tập toán thpt 6 (331)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (149.95 KB, 12 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

2mx + 1
1
Câu 1. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. −5.
B. 0.
C. 1.
D. −2.
Câu 2. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 0.

B. 1.

C. 2.

D. 3.


Câu 3. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.
B. Vô nghiệm.
C. 3.
D. 1.
Câu 4. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD. Cho
hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 16π.
B. 32π.
C. 8π.
D. V = 4π.
Câu 5. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
B. Cả ba đáp án trên.

C. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
D. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
Câu 6. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 20, 128 triệu đồng. B. 50, 7 triệu đồng.
C. 3, 5 triệu đồng.
D. 70, 128 triệu đồng.
1
Câu 7. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
xy + 1
0
y
0

A. xy = e + 1.
B. xy = −e − 1.
C. xy0 = −ey + 1.
D. xy0 = ey − 1.

Câu 8. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
A. .
B. −3.
C. 3.
D. − .
3
3
log3 12
Câu 9. [1] Giá trị của biểu thức 9
bằng
A. 144.
B. 4.
C. 24.
D. 2.
1 − xy
Câu 10. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x +
√ y.




18 11 − 29
2 11 − 3
9 11 − 19
9 11 + 19
A. Pmin =
. B. Pmin =
.
C. Pmin =
. D. Pmin =
.
21
3
9
9
Câu 11. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −12.
B. −5.
C. −15.
D. −9.
Câu 12. Khối đa diện đều loại {3; 3} có số cạnh
A. 4.
B. 5.

C. 8.

D. 6.
Trang 1/10 Mã đề 1



1
Câu 13. Hàm số y = x + có giá trị cực đại là
x
A. 1.
B. 2.

C. −1.

D. −2.

Câu 14.
√ [4-1246d] Trong tất cả các số phức z thỏa mãn |z√− i| = 1. Tìm giá trị lớn nhất của |z|
A. 3.
B. 1.
C. 5.
D. 2.
[ = 60◦ , S A ⊥ (ABCD).
Câu 15. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh S C là a. Thể tích khối√chóp S .ABCD là


a3 3
a3 2
a3 2
3
.
B. a 3.
.
D.
.

A.
C.
4
12
6


Câu 16. Tìm
giá
trị
lớn
nhất
của
hàm
số
y
=
x
+
3
+
6√− x


A. 2 + 3.
B. 2 3.
C. 3 2.
D. 3.
Câu 17. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn mặt.

B. Năm mặt.
C. Hai mặt.

D. Ba mặt.

Câu 18. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1

A. 5.

B. 0.

C. 7.

D. 9.

Câu 19. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 6.
B. 2.
C. 1.

D. −1.

Câu 20. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; −8).
B. A(−4; 8).
C. A(−4; −8)(.
D. A(4; 8).
Câu 21. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0

đến đường
√ thẳng BD bằng



a b2 + c2
b a2 + c2
c a2 + b2
abc b2 + c2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 22. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
A. −4.

B. −7.

C. −2.

D.


67
.
27

Câu 23. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un
B. Nếu lim un
C. Nếu lim un
D. Nếu lim un

!
un
= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
= +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
= +∞.
= a > 0 và lim vn = 0 thì lim
vn !
un
= a , 0 và lim vn = ±∞ thì lim
= 0.
vn

Câu 24. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
2

A. 6.


B. −1.

C. 4.

3

Z

6
3x + 1

. Tính

1

f (x)dx.
0

D. 2.

Câu 25. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là

3
3
a
2a 3
a3

4a3 3
A.
.
B.
.
C.
.
D.
.
3
3
6
3
x−3
Câu 26. [1] Tính lim
bằng?
x→3 x + 3
A. 0.
B. −∞.
C. 1.
D. +∞.
Trang 2/10 Mã đề 1


Câu 27. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 4 mặt. B. 4 đỉnh, 8 cạnh, 4 mặt. C. 3 đỉnh, 3 cạnh, 3 mặt. D. 4 đỉnh, 6 cạnh, 4 mặt.
8
Câu 28. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 96.

B. 82.
C. 81.
D. 64.
Câu 29. Khối đa diện đều loại {3; 5} có số cạnh
A. 30.
B. 20.
2n − 3
Câu 30. Tính lim 2
bằng
2n + 3n + 1
A. 1.
B. 0.

C. 12.

D. 8.

C. +∞.

D. −∞.

Câu 31. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tam giác.
B. Một khối chóp tam giác, một khối chóp tứ giác.
C. Hai khối chóp tứ giác.
D. Một khối chóp tam giác, một khối chóp ngữ giác.
log2 240 log2 15

+ log2 1 bằng
log3,75 2 log60 2

B. 3.
C. 4.

Câu 32. [1-c] Giá trị biểu thức
A. 1.

D. −8.

Câu 33. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 6).
B. (2; 4; 3).
C. (1; 3; 2).
D. (2; 4; 4).
Câu 34. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .
D. k = .
A. k = .
6
9
15
18
1

Câu 35. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (−∞; 3).
B. (1; 3).
C. (1; +∞).
D. (−∞; 1) và (3; +∞).
q
Câu 36. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 1].
B. m ∈ [0; 4].
C. m ∈ [−1; 0].
D. m ∈ [0; 2].
Câu 37. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Bát diện đều.
B. Thập nhị diện đều. C. Nhị thập diện đều.

D. Tứ diện đều.

Câu 38. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim+ f (x) = f (b).
B. lim+ f (x) = f (a) và lim− f (x) = f (b).
x→a

x→b

x→a


x→b

C. lim+ f (x) = f (a) và lim+ f (x) = f (b).

Câu 39. Khối đa diện đều loại {5; 3} có số cạnh
A. 8.
B. 12.

x→a

x→b

x→a

x→b

D. lim− f (x) = f (a) và lim− f (x) = f (b).

C. 20.

D. 30.

Câu 40. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ông muốn hoàn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ơng A hồn nợ.
Trang 3/10 Mã đề 1



(1, 01)3
triệu.
(1, 01)3 − 1
100.1, 03
C. m =
triệu.
3

A. m =

100.(1, 01)3
triệu.
3
120.(1, 12)3
D. m =
triệu.
(1, 12)3 − 1
B. m =

2
Câu 41. Tính
√4 mơ đun của số phức z biết (1 + 2i)z = 3 + 4i. √
A. |z| = 5.
B. |z| = 5.
C. |z| = 5.


D. |z| = 2 5.


Câu 42. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 8 lần.
B. Tăng gấp 6 lần.
C. Tăng gấp 4 lần.
D. Tăng gấp đôi.
Câu 43. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −2 ≤ m ≤ 2.
B. m ≤ 3.
C. −3 ≤ m ≤ 3.
D. m ≥ 3.
Câu 44. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng S B và AD bằng




a 2
a 2
B.
A. a 3.
.
C.
.
D. a 2.
2
3
cos n + sin n
Câu 45. Tính lim
n2 + 1

A. 1.
B. +∞.
C. −∞.
D. 0.
Câu 46. Dãy số nào sau đây có giới hạn là 0?
n2 − 2
n2 + n + 1
A. un =
.
B.
u
=
.
n
5n − 3n2
(n + 1)2

C. un =

n2 − 3n
.
n2

Câu 47. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 3.

B. 2.

Câu 48. Khối đa diện đều loại {3; 5} có số đỉnh

A. 30.
B. 12.

D. un =
1
3|x−1|

1 − 2n
.
5n + n2

= 3m − 2 có nghiệm duy

C. 1.

D. 4.

C. 8.

D. 20.


Câu 49. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là

3

a 3
a3

a3 3
3
A.
.
B. a 3.
C.
.
D.
.
12
4
3

Câu 50. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng



3a
a 38
3a 58
3a 38
.
B.
.
C.
.
D.
.

A.
29
29
29
29
0 0 0 0
0
Câu 51.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 3
a 6
a 6
a 6
.
B.
.
C.
.
D.
.
A.
2
3
2
7
5
Câu 52. Tính lim
n+3
A. 2.

B. 1.
C. 3.
D. 0.

Câu 53. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
ab
1
1
A. 2
.
B.
.
C.
.
D.
.



a + b2
a2 + b2
a2 + b2
2 a2 + b2
Trang 4/10 Mã đề 1


1
. Trong các khẳng định sau đây, khẳng định nào đúng?

x+1
0
y
B. xy = e + 1.
C. xy0 = ey − 1.
D. xy0 = −ey − 1.

Câu 54. [3-12217d] Cho hàm số y = ln
A. xy0 = −ey + 1.

ln2 x
m
Câu 55. [3] Biết rằng giá trị lớn nhất của hàm số y =
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 32.
B. S = 22.
C. S = 24.
D. S = 135.
Câu 56. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng số cạnh của khối chóp.
B. Số đỉnh của khối chóp bằng 2n + 1.
C. Số mặt của khối chóp bằng 2n+1.
D. Số cạnh của khối chóp bằng 2n.
Câu 57. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (1; +∞).
B. (−∞; 1).
C. (−∞; −1).


D. (−1; 1).

Câu 58. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD
√ là
3
10a 3
A. 10a3 .
B. 20a3 .
C.
.
D. 40a3 .
3
Câu 59. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tam giác.
B. Hai hình chóp tứ giác.
C. Một hình chóp tứ giác và một hình chóp ngũ giác.
D. Một hình chóp tam giác và một hình chóp tứ giác.
2

Câu 60. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
2
1
A. 2 .
B. 3 .
C. 3 .
e

e
2e

D.

1
√ .
2 e

9x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9x + 3
1
B. 1.
C. −1.
D. .
2

Câu 61. [2-c] Cho hàm số f (x) =
A. 2.

Câu 62. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 22.
B. y(−2) = 2.
C. y(−2) = 6.
D. y(−2) = −18.
4x + 1
bằng?
x→−∞ x + 1

B. −1.

Câu 63. [1] Tính lim
A. −4.

C. 4.

Câu 64. [1] Tập
! xác định của hàm số y != log3 (2x + 1) là
!
1
1
1
A. − ; +∞ .
B. −∞; − .
C. −∞; .
2
2
2

D. 2.
!
1
D.
; +∞ .
2

Câu 65. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 3 mặt.

C. 4 mặt.
D. 6 mặt.
Câu 66. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
Trang 5/10 Mã đề 1


Câu 67. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là


a3 6
a3 15
a3 5
A.
.
B.
.
C.
.
D. a3 6.
3
3
3
Câu 68. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?

A. 1134 m.
B. 1202 m.
C. 2400 m.
D. 6510 m.
Câu 69. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối bát diện đều. B. Khối tứ diện đều.

C. Khối 12 mặt đều.

D. Khối 20 mặt đều.

Câu 70. Khối đa diện đều loại {3; 4} có số đỉnh
A. 8.
B. 10.

C. 4.

D. 6.

Câu 71. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó, các kích thước của hình hộp
√ là√
A. 2, 4, 8.
B. 6, 12, 24.
C. 2 3, 4 3, 38.
D. 8, 16, 32.
Câu 72. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −2e2 .
B. −e2 .
C. 2e4 .

D. 2e2 .
Câu 73. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 12.
B. ln 14.
C. ln 10.
D. ln 4.
Câu 74. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 23.
B. 21.
C. 22.
D. 24.
Câu 75. Dãy
!n số nào sau đây có giới
!n hạn là 0?
5
5
A. − .
B.
.
3
3

!n
4
C.
.
e


!n
1
D.
.
3

Câu 76. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là



3
5a 3
4a3 3
2a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
2

Câu 77. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối bát diện đều.
B. Khối lập phương.
C. Khối tứ diện.
D. Khối lăng trụ tam giác.
Câu 78. Cho
√ số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.
A. |z| = 10.
B. |z| = 17.
C. |z| = 17.
D. |z| = 10.
Câu 79. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.016.000.
B. 102.423.000.
C. 102.424.000.
D. 102.016.000.
2n + 1
Câu 80. Tính giới hạn lim
3n + 2
2
1
3
A. 0.
B. .
C. .
D. .
3

2
2
Trang 6/10 Mã đề 1


Câu 81. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 3ac
3b + 3ac
3b + 2ac
.
B.
.
C.
.
D.
.
A.
c+3
c+2
c+2
c+1
Câu 82. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng




14 3

20 3
A. 8 3.
B. 6 3.
C.
.
D.
.
3
3
Câu 83. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
Thể tích khối chóp S .ABCD là

√ phẳng vng góc với 3(ABCD).
3
3

a 3
a 3
a 2
A.
.
B.
.
C.
.
D. a3 3.
4
2
2

!
1
1
1
Câu 84. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3
5
A. .
B. .
C. 2.
D. +∞.
2
2
Z 3
a
a
x
Câu 85. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 4.
B. P = 28.
C. P = 16.

D. P = −2.
x+1
Câu 86. Tính lim
bằng
x→+∞ 4x + 3
1
1
A. .
B. .
C. 3.
D. 1.
4
3
Câu 87. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. 2n2 lần.
B. n3 lần.
C. n3 lần.
D. 2n3 lần.
Câu 88. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó không rút tiền
ra.
A. 212 triệu.
B. 216 triệu.
C. 210 triệu.
D. 220 triệu.
Câu 89. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của


A. Tăng lên (n − 1) lần. B. Tăng lên n lần.
C. Không thay đổi.
D. Giảm đi n lần.
Câu 90. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 2).
B. (−∞; 0) và (2; +∞). C. (0; +∞).
!2x−1
!2−x
3
3
Câu 91. Tập các số x thỏa mãn


5
5
A. (+∞; −∞).
B. [1; +∞).
C. [3; +∞).

D. (0; 2).

D. (−∞; 1].

Câu 92. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm tứ diện đều.
B. Một tứ diện đều và bốn hình chóp tam giác đều.
C. Bốn tứ diện đều và một hình chóp tam giác đều.
D. Năm hình chóp tam giác đều, khơng có tứ diện đều.
Trang 7/10 Mã đề 1



Z
Câu 93. Cho
A. 0.

1

2

ln(x + 1)
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
B. 3.
C. −3.

D. 1.

Câu 94. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng



a 6
a 6
a 6
A.
C.
.
B. a 6.

.
D.
.
6
2
3
Câu 95. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 − ln x.
B. y0 = x + ln x.
C. y0 = 1 + ln x.
D. y0 = ln x − 1.
x+2
Câu 96. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 1.
B. Vô số.
C. 3.
D. 2.
Câu 97. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (II).

B. (I) và (III).


Câu 98. Khối đa diện đều loại {4; 3} có số đỉnh
A. 10.
B. 4.

C. Cả ba mệnh đề.

D. (II) và (III).

C. 6.

D. 8.

Câu 99. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là −4.
B. Phần thực là 4, phần ảo là 1.
C. Phần thực là −1, phần ảo là 4.
D. Phần thực là 4, phần ảo là −1.
3

Câu 100. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e3 .
B. e2 .
C. e.
D. e5 .

 π π
Câu 101. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 1.
B. 3.

C. −1.
D. 7.
Câu 102.
√ Thể tích của tứ diện đều
√cạnh bằng a


3
3
a 2
a 2
a3 2
a3 2
A.
.
B.
.
C.
.
D.
.
2
6
4
12
Câu 103. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + 3.

B. T = e + .
C. T = e + 1.
D. T = 4 + .
e
e
Câu 104. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. [6, 5; +∞).
B. (4; +∞).
C. (−∞; 6, 5).
D. (4; 6, 5].
2n + 1
Câu 105. Tìm giới hạn lim
n+1
A. 2.
B. 1.
C. 0.
D. 3.
Câu 106. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11
9
A. 5.
B. 7.
C.
.
D. .
2
2
Trang 8/10 Mã đề 1



Câu 107. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. −2 + 2 ln 2.
B. e.
C. 1.
D. 4 − 2 ln 2.
x2 − 5x + 6
x→2
x−2
B. −1.

Câu 108. Tính giới hạn lim
A. 0.

C. 5.

D. 1.

Câu 109. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 5 mặt. C. 6 đỉnh, 6 cạnh, 6 mặt. D. 5 đỉnh, 9 cạnh, 6 mặt.
Câu 110. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n lần.
B. n2 lần.
C. 3n3 lần.
D. n3 lần.
1 − n2
bằng?
Câu 111. [1] Tính lim 2
2n + 1
1
1

A. .
B. .
3
2

1
D. − .
2

C. 0.

[ = 60◦ , S O
Câu 112. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S BC) bằng


2a 57
a 57
a 57
A.
.
B.
.
C. a 57.
D.
.
19
19

17
Câu 113. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
C. − < m < 0.
D. m ≥ 0.
A. m ≤ 0.
B. m > − .
4
4
Câu 114. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó
Q0 là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số
lượng vi khuẩn đạt 100.000 con?
A. 24.
B. 15, 36.
C. 20.
D. 3, 55.
Câu 115. Khối đa diện đều loại {5; 3} có số đỉnh
A. 30.
B. 12.

C. 20.

D. 8.

Câu 116. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 2.
B. −4.
C. 4.


D. −2.

d = 300 .
Câu 117. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
Độ dài cạnh bên CC 0 = 3a. Thể tích V √của khối lăng trụ đã cho.

3
3

a
3a
3
3
B. V =
.
C. V = 6a3 .
D. V =
.
A. V = 3a3 3.
2
2

Câu 118. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. 64.
C. 63.
D. Vô số.
1 + 2 + ··· + n

Câu 119. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
A. Dãy số un khơng có giới hạn khi n → +∞.
B. lim un = 1.
1
C. lim un = .
D. lim un = 0.
2
Câu 120.
Các khẳngZđịnh nào sau đây là sai?
Z

!0

f (x)dx, k là hằng số.
B.
f (x)dx = f (x).
Z
Z
Z
Z
C.
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C. D.
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C.
A.

k f (x)dx = k


Z

Trang 9/10 Mã đề 1


Câu 121. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C) và (A0C 0 D) bằng




a 3
2a 3
a 3
B.
.
C.
.
D.
.
A. a 3.
2
2
3
Câu 122. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).

√ Thể tích khối chóp S 3.ABC
√ là


a3 3
a 3
a3 3
a3 2
A.
.
B.
.
C.
.
D.
.
12
6
4
12
3
2
x
Câu 123. [2] Tìm m để giá trị nhỏ nhất
2
√ của hàm số y = 2x + (m + 1)2 trên [0; 1] bằng √
A. m = ±1.
B. m = ± 3.
C. m = ±3.
D. m = ± 2.
Câu 124. [1] Cho a > 0, a , 1. Giá trị của biểu thức log a1 a2 bằng
1
1

A. 2.
B. − .
C. .
D. −2.
2
2
Câu 125. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4




a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.

6
12
24
36
Câu 126.
[1233d-2] MệnhZđề nào sau đây
Z
Z sai?
[ f (x) + g(x)]dx =

A.
Z
B.

[ f (x) − g(x)]dx =

f (x)dx +

Z

g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z

f (x)dx −

g(x)dx, với mọi f (x), g(x) liên tục trên R.

Z

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.

Z
Z
D.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
C.

Câu 127. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 6 mặt.
C. 5 mặt.

D. 3 mặt.

Câu 128. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
Câu 129. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích
hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 3.
B. 0, 4.
C. 0, 2.
D. 0, 5.
Câu 130. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−3; 1].
B. [−1; 3].
C. [1; +∞).

D. (−∞; −3].
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
2.

C

3. A

5.

C

6. A

7.

8. A

9. A

1.

10.


B

11. A

B

12.

D

13.

14.

D

15. A

16.

D

D

17.

C

18.


D

19. A

20.

D

21. A

D

22.

C

23.

24.

C

25.

D

27.

D


26. A
C

28.
30.

29. A
31.

B

32.

D

33. A

35.

D

36.

37.

B

38.


39.

D
C

45.

44.

B

48.

C

49.

B

46.

D

47.

D

D
B


50.

51.

B

52.

53.

B

54.

C
D
C

56.

55. A
57.

D

58.

59. A

D

B

60. A
62.

B

63.

D

64. A

C
B

66.

67. A
69.

C

42. A

43.

65.

B


40. A

41. A

61.

C

D
1

B

68.

D

70.

D


71.

B

72.

73.


B

74.

75.

B
C

76.

D

D

77.

C

78. A

79.

C

80.

B


81.

C

82.

B

83.

B

85. A
87.

86. A
B

88. A

89.
91.

C

84.

D
B


90.

B

92.

B

93.

C

94. A

95.

C

96.

D

98.

D

100.

D


101. A

102.

D

103. A

104.

D

105. A

106.

D

97. A
99.

D

107.

B

108.

109.


B

110.

111.
113.

D

114.
D

119.

120.
D

C

122. A

123. A
125.

D

118. A

C


121.

B

116.

C

117.

D

112. A

B

115.

B

B

124.

D

126.

D


127. A

128. A

129. A

130. A

2



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×