Tải bản đầy đủ (.pdf) (18 trang)

Bài tập toán thpt (6)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (158.1 KB, 18 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 5 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

Câu 1. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim− f (x) = f (b).
B. lim+ f (x) = f (a) và lim+ f (x) = f (b).
x→a

x→b

x→a

x→b

C. lim− f (x) = f (a) và lim+ f (x) = f (b).

Câu 2. !Dãy số nào sau đây có giới
!n hạn là 0?
n
4
5
.
B.
.


A.
3
e
2x + 1
x→+∞ x + 1
B. 1.

x→a

x→b

x→a

x→b

D. lim+ f (x) = f (a) và lim− f (x) = f (b).

!n
5
C. − .
3

!n
1
D.
.
3

C. 2.


D.

C. 0.

1
D. − .
4

C. +∞.

D. 3.

n3 − 3n
C. un =
.
n+1

!n
6
D. un =
.
5

C. 5.

D. 1.

Câu 3. Tính giới hạn lim
A. −1.




x2 + 3x + 5
x→−∞
4x − 1
1
B. .
4

1
.
2

Câu 4. Tính giới hạn lim
A. 1.
Câu 5. Tính lim
x→1

A. 0.

x3 − 1
x−1

B. −∞.

Câu 6. Dãy số nào có giới hạn bằng 0? !
n
−2
2
A. un = n − 4n.

B. un =
.
3
Câu 7. Tính giới hạn lim
x→2

A. −1.

x2 − 5x + 6
x−2
B. 0.

Câu 8. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = a.
B. lim+ f (x) = lim− f (x) = +∞.
x→a

x→a

x→a

C. f (x) có giới hạn hữu hạn khi x → a.

x→a

D. lim f (x) = f (a).
x→a

Câu 9. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1


A. 7.

B. 5.
1 − 2n
bằng?
Câu 10. [1] Tính lim
3n + 1
2
B. 1.
A. − .
3

C. 0.

C.

1
.
3

D. 9.

D.

2
.
3

Câu 11. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị

của a + 2b bằng
7
5
A. .
B. 6.
C. 9.
D. .
2
2

Câu 12. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. 64.
C. Vô số.
D. 62.
Trang 1/5 Mã đề 1


Câu 13. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m > .
B. m ≥ .
C. m < .
D. m ≤ .
4
4

4
4
1 − xy
Câu 14. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x√+ y.



9 11 − 19
9 11 + 19
18 11 − 29
2 11 − 3
A. Pmin =
. B. Pmin =
. C. Pmin =
. D. Pmin =
.
9
9
21
3
log 2x
Câu 15. [1229d] Đạo hàm của hàm số y =

x2
1 − 2 log 2x
1 − 2 ln 2x
1

1 − 4 ln 2x
.
B. y0 =
.
C. y0 = 3
.
D. y0 = 3
.
A. y0 =
3
3
2x ln 10
x
x ln 10
2x ln 10
1
Câu 16. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 < m ≤ 1.
B. 2 < m ≤ 3.
C. 2 ≤ m ≤ 3.
D. 0 ≤ m ≤ 1.
1
Câu 17. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y

A. xy = −e − 1.
B. xy = e − 1.
C. xy0 = ey + 1.
D. xy0 = −ey + 1.
Câu 18. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 6).
B. (1; 3; 2).
C. (2; 4; 3).
D. (2; 4; 4).
Câu 19. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 13.
B. 2020.
C. log2 13.
D. log2 2020.
Câu 20. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 1.
B. 3.
C. Vô số.
D. 2.
un
Câu 21. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. −∞.
B. 0.
C. +∞.
D. 1.
Câu 22. Dãy số nào sau đây có giới hạn khác 0?
1

1
A. .
B. √ .
n
n
7n2 − 2n3 + 1
Câu 23. Tính lim 3
3n + 2n2 + 1
2
7
A. - .
B. .
3
3

C.

n+1
.
n

C. 1.

!
1
1
1
Câu 24. Tính lim
+
+ ··· +

1.2 2.3
n(n + 1)
3
A. .
B. 0.
C. 2.
2
!
1
1
1
Câu 25. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
5
A. +∞.
B. 2.
C. .
2
cos n + sin n
Câu 26. Tính lim
n2 + 1
A. +∞.
B. 1.
C. 0.

D.

sin n

.
n

D. 0.

D. 1.

D.

3
.
2

D. −∞.
Trang 2/5 Mã đề 1


Câu 27. Phát biểu nào sau đây là sai?
A. lim un = c (Với un = c là hằng số).
1
C. lim √ = 0.
n

B. lim qn = 1 với |q| > 1.
1
D. lim k = 0 với k > 1.
n

!
3n + 2

2
Câu 28. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 2.
B. 4.
C. 5.
D. 3.
Câu 29. Dãy số nào sau đây có giới hạn là 0?
n2 − 2
n2 + n + 1
A. un =
.
B.
u
=
.
n
5n − 3n2
(n + 1)2
Câu 30. Tính lim

C. un =

n2 − 3n
.
n2

D. un =


1 − 2n
.
5n + n2

2n2 − 1
3n6 + n4

2
.
3
Câu 31. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB)
√ bằng



a 6
A.
.
B. a 6.
C. a 3.
D. 2a 6.
2
Câu 32. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
1
1
ab

.
D. √
A. √
.
B. √
.
C. 2
.
2
a +b
2 a2 + b2
a2 + b2
a2 + b2
A. 1.

B. 0.

C. 2.

D.

Câu 33. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
0 0
(AB0C) và
√ (A C D) bằng



2a 3
a 3

a 3
A.
.
B. a 3.
C.
.
D.
.
2
3
2
Câu 34. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng



a 2
a 2
.
B.
.
C. a 2.
A.
D. a 3.
3
2
[ = 60◦ , S O
Câu 35. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ Khoảng cách từ O đến (S BC) bằng


√ với mặt đáy và S O = a.

2a 57
a 57
a 57
.
B.
.
C. a 57.
D.
.
A.
19
19
17
Câu 36. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
5a
a
2a
8a
A.
.
B. .
C.
.
D.
.

9
9
9
9
d = 120◦ .
Câu 37. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 2a.
B. 3a.
C. 4a.
D.
.
2
Câu 38. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng



a 6
a 6
a 6
A.
.
B.
.
C. a 6.
D.
.
2

3
6
Trang 3/5 Mã đề 1


[ = 60◦ , S O
Câu 39. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ BC) bằng
√ với mặt đáy và S O = a. Khoảng cách từ A đến (S


a 57
a 57
2a 57
C.
A.
.
B. a 57.
.
D.
.
17
19
19
0 0 0 0
0
Câu 40.√ [2] Cho hình lâp phương
√ bằng
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC

a 6
a 3
a 6
a 6
A.
.
B.
.
C.
.
D.
.
2
2
7
3
Câu 41. Hàm số f có nguyên hàm trên K nếu
A. f (x) xác định trên K.
B. f (x) có giá trị lớn nhất trên K.
C. f (x) có giá trị nhỏ nhất trên K.
D. f (x) liên tục trên K.
Câu 42.
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh
Z đề nàoZsai?
A.
Z
C.

( f (x) − g(x))dx =
f (x)dx − g(x)dx.

Z
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.

f (x)g(x)dx =

B.
Z
D.

f (x)dx g(x)dx.
Z
Z
( f (x) + g(x))dx =
f (x)dx + g(x)dx.

Câu 43. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai ngun hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (III) sai.

B. Câu (I) sai.

C. Khơng có câu nào D. Câu (II) sai.
sai.
Câu 44. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.

Z
u0 (x)
dx = log |u(x)| + C.
B.
u(x)
C. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
D. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
Câu 45. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 2.

B. 4.

C. 3.

D. 1.

Câu 46. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều đúng.
B. Cả hai đều sai.

C. Chỉ có (I) đúng.

D. Chỉ có (II) đúng.

Trang 4/5 Mã đề 1


Câu 47. Mệnh đề nào sau đây sai?
Z
A. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

f (x)dx = F(x) + C.

B. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
C. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
!0
Z
D.
f (x)dx = f (x).
Câu 48.
Z Trong cácα+1khẳng định sau, khẳng định nào sai? Z
x
A.
xα dx =
+ C, C là hằng số.
B.
0dx = C, C là hằng số.
α+1
Z
Z
1
dx = ln |x| + C, C là hằng số.
C.
dx = x + C, C là hằng số.

D.
x
Câu 49. Trong các khẳng định sau, khẳng định nào sai?
A. Cả ba đáp án trên.
B. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.

C. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
D. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
Câu 50. Cho hai hàm y = f (x), y = g(x)
Z có đạo hàm
Z trên R. Phát biểu nào sau đây đúng?
A. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f 0 (x)dx =
g0 (x)dx.
Z
Z
0
B. Nếu
f (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
C. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.


- - - - - - - - - - HẾT- - - - - - - - - -

Trang 5/5 Mã đề 1


Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 5 trang)

Thời gian làm bài: 90 phút
Mã đề thi 2

2n + 1
Câu 1. Tìm giới hạn lim
n+1
A. 3.
B. 0.

C. 1.

D. 2.

Câu 2. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
A. lim [ f (x) − g(x)] = a − b.
B. lim [ f (x)g(x)] = ab.

x→+∞
x→+∞
f (x) a
C. lim [ f (x) + g(x)] = a + b.
D. lim
= .
x→+∞
x→+∞ g(x)
b
Câu 3. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 2.
B. 3.

C. 1.

D. +∞.

Câu 4. Cho f (x) = sin x − cos x − x. Khi đó f (x) bằng
A. 1 + 2 sin 2x.
B. −1 + sin x cos x.
C. −1 + 2 sin 2x.
D. 1 − sin 2x.
1 − 2n
bằng?
Câu 5. [1] Tính lim
3n + 1
2
1
2

A. 1.
B. − .
C. .
D. .
3
3
3
2
x − 12x + 35
Câu 6. Tính lim
x→5
25 − 5x
2
2
A. −∞.
B. .
C. +∞.
D. − .
5
5
2
Câu 7. Giá trị của lim(2x − 3x + 1) là
x→1
A. +∞.
B. 1.
C. 2.
D. 0.
4x + 1
bằng?
Câu 8. [1] Tính lim

x→−∞ x + 1
A. 2.
B. 4.
C. −4.
D. −1.
3
x −1
Câu 9. Tính lim
x→1 x − 1
A. 3.
B. 0.
C. −∞.
D. +∞.
x+1
bằng
Câu 10. Tính lim
x→−∞ 6x − 2
1
1
1
A. 1.
B. .
C. .
D. .
6
2
3
2
2
Câu 11. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a + b + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị

của a + 2b bằng
5
7
A. .
B. .
C. 6.
D. 9.
2
2
Câu 12. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m > .
B. m < .
C. m ≥ .
D. m ≤ .
4
4
4
4
log(mx)
Câu 13. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m > 4.
B. m ≤ 0.
C. m < 0 ∨ m = 4.
D. m < 0.

q
Câu 14. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 1].
B. m ∈ [0; 2].
C. m ∈ [−1; 0].
D. m ∈ [0; 4].
2

2

0

Trang 1/5 Mã đề 2


Câu 15. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 13.
B. log2 2020.
C. 2020.
D. 13.

Câu 16. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị
" nhỏ! nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới đây?
5
5
A.

;3 .
B. 2; .
C. (1; 2).
D. [3; 4).
2
2

Câu 17. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. 64.
C. 63.
D. Vô số.
log 2x

Câu 18. [1229d] Đạo hàm của hàm số y =
x2
1 − 2 log 2x
1 − 2 ln 2x
1 − 4 ln 2x
1
A. y0 =
.
B. y0 = 3
.
C. y0 =
.
D. y0 = 3
.
3

3
x
x ln 10
2x ln 10
2x ln 10
Câu 19. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m < 3.
C. m ≥ 3.
D. m > 3.
Câu 20. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 3).
B. (2; 4; 6).
C. (2; 4; 4).
D. (1; 3; 2).
un
Câu 21. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. 1.
B. +∞.
C. 0.
D. −∞.
7n2 − 2n3 + 1
Câu 22. Tính lim 3
3n + 2n2 + 1
7
2
B. 0.

C. 1.
D. .
A. - .
3
3
2
2
2
1 + 2 + ··· + n
Câu 23. [3-1133d] Tính lim
n3
2
1
A. .
B. +∞.
C. .
D. 0.
3
3
n−1
Câu 24. Tính lim 2
n +2
A. 0.
B. 2.
C. 3.
D. 1.
Câu 25. Phát biểu nào sau đây là sai?
A. lim qn = 1 với |q| > 1.
C. lim un = c (Với un = c là hằng số).
5

Câu 26. Tính lim
n+3
A. 2.

1
B. lim √ = 0.
n
1
D. lim k = 0 với k > 1.
n

B. 1.

C. 3.
D. 0.
1 + 2 + ··· + n
Câu 27. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
1
A. lim un = .
B. lim un = 1.
2
C. Dãy số un khơng có giới hạn khi n → +∞.
D. lim un = 0.
cos n + sin n
Câu 28. Tính lim
n2 + 1
A. 0.
B. −∞.

C. +∞.
D. 1.
Trang 2/5 Mã đề 2


Câu 29. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 0.

B. 2.

C. 3.

D. 1.

Câu 30. Dãy số nào sau đây có giới hạn là 0?
n2 − 2
1 − 2n
n2 − 3n
n2 + n + 1
A. un =
.
B.
u
=
.
C.
u

=
.
D.
u
=
.
n
n
n
5n − 3n2
5n + n2
n2
(n + 1)2
Câu 31. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng



a 6
a 6
a 6
C.
A.
.
B. a 6.
.
D.
.
2
3

6
Câu 32. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
2a
5a
a
8a
.
B.
.
C.
.
D. .
A.
9
9
9
9
[ = 60◦ , S O
Câu 33. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S BC) bằng


a 57
a 57
2a 57
A.

.
B.
.
C. a 57.
D.
.
17
19
19
Câu 34. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường



√ thẳng BD bằng
c a2 + b2
a b2 + c2
abc b2 + c2
b a2 + c2
.
B. √
.
C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2

a2 + b2 + c2
a2 + b2 + c2
Câu 35. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a 3
a
A. .
B. a.
C.
.
D. .
2
2
3
Câu 36. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD

√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng


a 2
a 2
A.
.
B. a 2.
C.
.

D. 2a 2.
2
4
0 0 0 0
Câu 37. [3] Cho hình lập phương ABCD.A B C D có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C) và (A0C 0 D) bằng




a 3
2a 3
a 3
A. a 3.
B.
.
C.
.
D.
.
3
2
2
[ = 60◦ , S O
Câu 38. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S√BC) bằng

a 57

a 57
2a 57
A.
.
B.
.
C.
.
D. a 57.
19
17
19
0 0 0 0
Câu 39. [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
ab
1
1
A. 2
.
B.
.
C.
.
D.
.




a + b2
a2 + b2
2 a2 + b2
a2 + b2
Trang 3/5 Mã đề 2


0 0 0 0
0
Câu 40.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 6
a 3
a 6
A.
.
B.
.
C.
.
D.
.
2
7
2
3
Câu 41. Xét hai câu sau
Z

Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên

hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (I) đúng.

B. Cả hai câu trên sai.

C. Chỉ có (II) đúng.

D. Cả hai câu trên đúng.

Câu 42. Cho
Z hai hàm yZ= f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
B. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z

C. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
0
D. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Câu 43. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (I) đúng.
B. Chỉ có (II) đúng.

C. Cả hai đều sai.

D. Cả hai đều đúng.

Câu 44. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
Câu 45. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).

Các mệnh đề đúng là
A. (II) và (III).

B. (I) và (II).

C. Cả ba mệnh đề.

D. (I) và (III).

Câu 46.
đề nào sau đây sai?
Z [1233d-2] Mệnh
Z
A.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z
B.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
Z
C.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
D.

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Trang 4/5 Mã đề 2


Câu 47. Trong các khẳng định sau, khẳng định nào sai?√
A. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
B. Cả ba đáp án trên.
C. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
D. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
Câu 48.
Z Trong các khẳng định sau, khẳng định nào sai? Z
dx = x + C, C là hằng số.

A.
Z
C.

xα dx =

B.

xα+1
+ C, C là hằng số.
α+1

Z
D.

0dx = C, C là hằng số.
1

dx = ln |x| + C, C là hằng số.
x

Câu 49. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Khơng có câu nào B. Câu (I) sai.
C. Câu (II) sai.
D. Câu (III) sai.
sai.
Câu 50. Mệnh đề nào sau đây sai?
A. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
!0
Z
B.
f (x)dx = f (x).
C. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Z
D. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

f (x)dx = F(x) + C.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 5/5 Mã đề 2


Free LATEX


BÀI TẬP TỐN THPT

(Đề thi có 5 trang)

Thời gian làm bài: 90 phút
Mã đề thi 3

x+1
Câu 1. Tính lim
bằng
x→−∞ 6x − 2
1
B. 1.
A. .
3

C.

Câu 2. Dãy số
!n nào có giới hạn bằng 0? !n
6
−2
A. un =
.
B. un =
.
5
3


1
.
2

D.

C. un = n2 − 4n.

1
.
6

D. un =

n3 − 3n
.
n+1

x−2
Câu 3. Tính lim
x→+∞ x + 3
2
B. 2.
C. 1.
D. −3.
A. − .
3
x+1
Câu 4. Tính lim
bằng

x→+∞ 4x + 3
1
1
B. 1.
C. .
D. 3.
A. .
4
3
Câu 5. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim+ f (x) = f (b).
B. lim− f (x) = f (a) và lim+ f (x) = f (b).
x→a

x→b

x→a

x→b

C. lim− f (x) = f (a) và lim− f (x) = f (b).

x→a

x→b

x→a

x→b


D. lim+ f (x) = f (a) và lim− f (x) = f (b).

Câu 6. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞

A. lim [ f (x) + g(x)] = a + b.
x→+∞

C. lim [ f (x) − g(x)] = a − b.
x→+∞

1 − 2n
Câu 7. [1] Tính lim
bằng?
3n + 1
2
1
A. .
B. .
3
3
x−3
Câu 8. [1] Tính lim
bằng?
x→3 x + 3
A. +∞.
B. 0.
2x + 1
Câu 9. Tính giới hạn lim

x→+∞ x + 1
A. −1.
B. 2.

x→+∞

B. lim [ f (x)g(x)] = ab.
x→+∞
f (x) a
D. lim
= .
x→+∞ g(x)
b

C. 1.

2
D. − .
3

C. 1.

D. −∞.

C. 1.

D.

Câu 10. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 + 2 sin 2x.

B. 1 − sin 2x.
C. −1 + 2 sin 2x.

1
.
2

D. −1 + sin x cos x.

Câu 11. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. Vô số.
B. 2.
C. 3.
D. 1.
Câu 12. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
A. .
B. .
C. 6.
D. 9.
2
2
Trang 1/5 Mã đề 3


Câu 13. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1

1
1
1
A. m > .
B. m ≤ .
C. m < .
D. m ≥ .
4
4
4
4
x
x
Câu 14. [1225d] Tìm tham số thực m để phương trình log2 (5 − 1) log4 (2.5 − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m < 3.
C. m > 3.
D. m ≤ 3.
log 2x

Câu 15. [1229d] Đạo hàm của hàm số y =
x2
1
1 − 2 log 2x
1 − 4 ln 2x
1 − 2 ln 2x
A. y0 = 3
.
B. y0 =

.
C. y0 =
.
D. y0 = 3
.
3
3
2x ln 10
x
2x ln 10
x ln 10
1
Câu 16. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 1.
B. 4.
C. 2.
D. 3.
log(mx)
Câu 17. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m > 4.
B. m ≤ 0.
C. m < 0 ∨ m = 4.
D. m < 0.
Câu 18. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 13.
B. log2 2020.

C. 2020.
D. log2 13.
1
Câu 19. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 < m ≤ 1.
B. 2 ≤ m ≤ 3.
C. 0 ≤ m ≤ 1.
D. 2 < m ≤ 3.
Câu 20. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 6).
B. (2; 4; 4).
C. (1; 3; 2).
D. (2; 4; 3).
5
Câu 21. Tính lim
n+3
A. 1.
B. 2.
C. 0.
D. 3.
cos n + sin n
Câu 22. Tính lim
n2 + 1
A. 0.
B. −∞.
C. 1.
D. +∞.
Câu 23. Dãy số nào sau đây có giới hạn khác 0?

n+1
1
A.
.
B. .
n
n

1
C. √ .
n

D.

sin n
.
n

!
1
1
1
+ ··· +
Câu 24. [3-1131d] Tính lim +
1 1+2
1 + 2 + ··· + n
3
5
A. .
B. 2.

C. .
D. +∞.
2
2
Câu 25. Dãy số nào sau đây có giới hạn là 0?
n2 + n + 1
1 − 2n
n2 − 3n
n2 − 2
.
B.
u
=
.
C.
u
=
.
D.
u
=
.
A. un =
n
n
n
(n + 1)2
5n + n2
n2
5n − 3n2

2n2 − 1
Câu 26. Tính lim 6
3n + n4
2
A. 1.
B. .
C. 0.
D. 2.
3
1 + 2 + ··· + n
Câu 27. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
A. Dãy số un không có giới hạn khi n → +∞.
B. lim un = 1.
1
C. lim un = .
D. lim un = 0.
2
Trang 2/5 Mã đề 3


12 + 22 + · · · + n2
n3
B. +∞.

Câu 28. [3-1133d] Tính lim

2
.

3
Câu 29. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
A. 0.

C.

D.

1
.
3

(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 0.

B. 2.

C. 3.

D. 1.

Câu 30. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un
B. Nếu lim un
C. Nếu lim un
D. Nếu lim un

!

un
= −∞.
= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
v
n
!
un
= 0.
= a , 0 và lim vn = ±∞ thì lim
!vn
un
= a > 0 và lim vn = 0 thì lim
= +∞.
vn
= +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.

Câu 31. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường
√ thẳng BD bằng



a b2 + c2
c a2 + b2
b a2 + c2
abc b2 + c2
A. √
.
B. √

.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 32. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C) và (A0C 0 D) bằng




a 3
a 3
2a 3
A. a 3.
B.
.
C.
.
D.
.
3
2
2
3a
, hình chiếu vng

Câu 33. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

2a
a
a 2
a
B.
.
C. .
D.
.
A. .
4
3
3
3
Câu 34. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
A. 2a 6.
B.
.
C. a 6.

D. a 3.
2
0 0 0 0
0
Câu 35.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 6
a 3
a 6
A.
.
B.
.
C.
.
D.
.
2
3
2
7
d = 30◦ , biết S BC là tam giác đều
Câu 36. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39

a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
13
9
16
26
Câu 37. [2] Cho hình chóp S .ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng



a 6
a 6
a 6
A.
.
B.
.
C. a 6.
D.
.

6
2
3
Trang 3/5 Mã đề 3


Câu 38. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
1
ab
ab
.
C. √
.
D. √
.
A. 2
.
B. √
2
a +b
a2 + b2
2 a2 + b2
a2 + b2
Câu 39. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD
√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng




a 2
a 2
A.
.
B. a 2.
C. 2a 2.
D.
.
2
4
Câu 40. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
1
ab
ab
.
A. √
.
B. √
.
C. √
.
D. 2
a + b2
2 a2 + b2
a2 + b2
a2 + b2

Câu 41. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
Câu 42.
Z Các khẳng định
Z nào sau đây là sai?
k f (x)dx = k

A.
Z
C.

Z

!0

f (x)dx, k là hằng số.
B.
f (x)dx = f (x).
Z
Z
Z
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C. D.
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C.

Câu 43. Cho

Z hai hàm yZ = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
B. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
C. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
D. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Câu 44.
đề nào sai? Z
Z Cho hàm sốZf (x), g(x) liên tục trên R. Trong cácZmệnh đề sau, mệnh Z
A.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
B.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Z

Z
Z
Z
Z
Z
C.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
D.
f (x)g(x)dx =
f (x)dx g(x)dx.
Câu 45. Hàm số f có nguyên hàm trên K nếu
A. f (x) liên tục trên K.
C. f (x) có giá trị nhỏ nhất trên K.

B. f (x) có giá trị lớn nhất trên K.
D. f (x) xác định trên K.

Câu 46. Trong các khẳng định sau, khẳng định nào sai?√
A. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
B. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
C. Cả ba đáp án trên.
D. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
Câu 47.
Z Trong cácα+1khẳng định sau, khẳng định nào sai? Z
x
A.
xα dx =
+ C, C là hằng số.
B.

0dx = C, C là hằng số.
α+1
Trang 4/5 Mã đề 3


Z
C.

1
dx = ln |x| + C, C là hằng số.
x

Z
D.

dx = x + C, C là hằng số.

Câu 48. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 1.

B. 4.

C. 3.

D. 2.


Câu 49.
!0 nào sau đây sai?
Z Mệnh đề
A.
f (x)dx = f (x).
B. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
C. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a;Zb).
D. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

f (x)dx = F(x) + C.

Câu 50. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (III).

B. (II) và (III).

C. Cả ba mệnh đề.

D. (I) và (II).

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 5/5 Mã đề 3



ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

D

3.

C

5.

D

4.

D
B

8.

9.

D

13.

D


15.

12.

D

14.

D

16.

C

B

18. A

B

19.

D

10. A

11. A

21.


D

6.

7. A

17.

2.

20.

C
B

D

22.

C
D

24.

23. A
25.

B

26.


27.

B

28.

B

30.

B

29.
31.

D

35.

32.

B

33.

C

C


34.

B

D
B

36.

D

37.

D

38.

D

39.

D

40.

D

41.

D


42.

B
B

43.

C

44.

45.

C

46.

47.

48. A

B

49.

D

C


50.

C
Mã đề thi 2

1.

D

2.

3. A
5.

4.
B

7.

D

9. A
11.

D

6.

B


8.

B

10.

B

12.

B
1

C

D


13.

14.

C

C

15. A

16. A


17. A

18.

B
B

19.

C

20.

21.

C

22. A

23.

C

24. A

25. A

26.

27. A


28. A

29.

B

30.

31.

D

32. A

33.

D

34.

35.

B

36. A

37.

B


38. A

39.

B

40.

41.

D

42.

43.

B

44. A

45.

B

46. A

47. A

48.


49. A

50. A

D
B
C

D
B

C

Mã đề thi 3
1.

D

3.

2.

C

4. A

5.

D


6.

7.

D

8.

9.

B

10.

11.

B

12.

13.

B

14. A

15.

D


17.

29.

24.

D

B

26.

B

C

28.

C
B

D

30.

31. A
33.

B


22. A

C

27.

C

20. A

23. A
25.

B

18.
D

21.

D

16. A

C

19.

B


32.
B

34.
2

C
B
C


35.

36. A

B

37. A

38.

39. A

40.

C

42.


C

41.
43.

D

44.

C

45. A

46. A

47. A

48.

49.

B

50.

C

3

D

C
D



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×