Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg 3 (666)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (154.99 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 11 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. [1] Tập! xác định của hàm số y != log3 (2x + 1) là
!
1
1
1
A. − ; +∞ .
B. −∞; .
C. −∞; − .
2
2
2

!
1
D.
; +∞ .
2


Câu 2. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể tích
khối nón đã cho




√ là
πa3 6
πa3 3
πa3 3
πa3 3
.
B. V =
.
C. V =
.
D. V =
.
A. V =
6
6
3
2
log 2x
Câu 3. [3-1229d] Đạo hàm của hàm số y =

x2
1 − 2 ln 2x
1
1 − 4 ln 2x
1 − 2 log 2x
.
B. y0 = 3
.

C. y0 = 3
.
D. y0 =
.
A. y0 =
3
x
x ln 10
2x ln 10
2x3 ln 10
Câu 4. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −21.
B. P = 21.
C. P = −10.
D. P = 10.
2

2

Câu 5. [3-c]
số f (x) = 2sin x + 2cos x lần√lượt là
√ Giá trị nhỏ nhất và giá trị lớn nhất của hàm √
A. 2 và 2 2.
B. 2 và 3.
C. 2 và 3.
D. 2 2 và 3.
Câu 6. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 21.

B. 22.
C. 23.
D. 24.
Câu 7. Khối đa diện đều loại {4; 3} có số đỉnh
A. 10.
B. 4.

C. 8.

Câu 8. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 1.
B. −2 + 2 ln 2.
C. e.

D. 6.
D. 4 − 2 ln 2.

Câu 9. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 6
a 3
a3 6
a3 6
.
B.

.
C.
.
D.
.
A.
8
24
24
48
Câu 10. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều. C. Khối 20 mặt đều.
D. Khối tứ diện đều.
 π π
3
Câu 11. Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 3.
B. −1.
C. 1.
D. 7.
Câu 12. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
A. f 0 (0) = 1.
B. f 0 (0) =
.
C. f 0 (0) = ln 10.
D. f 0 (0) = 10.
ln 10

Câu 13. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ là
√ Thể tích khối chóp S 3.ABC


a3 3
a 2
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
6
12
4
12
Câu 14. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là −4.
B. Phần thực là −1, phần ảo là 4.
C. Phần thực là 4, phần ảo là −1.
D. Phần thực là 4, phần ảo là 1.
Trang 1/11 Mã đề 1



Câu 15. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −15.
B. −12.
C. −5.
D. −9.
x−3 x−2 x−1
x
Câu 16. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2).
B. [2; +∞).
C. (−∞; 2].
D. (2; +∞).
Câu 17. [3-1132d] Cho dãy số (un ) với un =
A. lim un = 0.
1
C. lim un = .
2

1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?

n2 + 1
B. Dãy số un khơng có giới hạn khi n → +∞.
D. lim un = 1.

Câu 18. [1] Giá trị của biểu thức 9log3 12 bằng
A. 24.
B. 2.

C. 144.

D. 4.

Câu 19. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một.
B. Có một hoặc hai.
C. Khơng có.
D. Có hai.
Câu 20. Khối đa diện đều loại {3; 4} có số mặt
A. 10.
B. 12.

C. 6.

D. 8.

Câu 21. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 9 lần.
B. Tăng gấp 18 lần.

C. Tăng gấp 3 lần.
D. Tăng gấp 27 lần.
!x
1

Câu 22. [2] Tổng các nghiệm của phương trình 31−x = 2 +
9
A. log2 3.
B. − log2 3.
C. 1 − log2 3.
D. − log3 2.
Câu 23. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối


√ chóp S .ABCD là
3
3
a 3
a 3
a3 2
a3 6
.
B.
.
C.
.
D.
.
A.

48
24
16
48
Câu 24.
√ [4-1245d] Trong tất cả√các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
A. 10.
B. 2.
C. 1.
D. 2.
Câu 25. Hàm số nào sau đây khơng có cực trị
1
A. y = x + .
B. y = x4 − 2x + 1.
x
x+1
Câu 26. Tính lim
bằng
x→−∞ 6x − 2
1
1
A. .
B. .
6
3

C. y = x3 − 3x.

C.


1
.
2

Câu 27. [3-12214d] Với giá trị nào của m thì phương trình
A. 2 < m ≤ 3.

B. 0 < m ≤ 1.

D. y =

x−2
.
2x + 1

D. 1.
1
3|x−2|

= m − 2 có nghiệm

C. 2 ≤ m ≤ 3.

D. 0 ≤ m ≤ 1.

Câu 28. Cho hình chóp S .ABCD có đáy ABCD là hình thang vuông tại A và D; AD = CD = a; AB = 2a;
tam giác S AB đều và nằm trong mặt
Thể tích khối chóp

√ phẳng vng góc với 3(ABCD).

√ S .ABCD là
3
3

a 3
a 2
a 3
A. a3 3.
B.
.
C.
.
D.
.
4
2
2
Trang 2/11 Mã đề 1


Câu 29. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của hình chóp S .ABCD với√mặt phẳng (AIC) có diện√tích là

2
11a2
a2 2
a2 7
a 5

.
B.
.
C.
.
D.
.
A.
16
32
4
8
Câu 30. Dãy số
!n nào có giới hạn bằng 0?
!n
−2
6
n3 − 3n
A. un =
.
B. un =
.
C. un =
.
D. un = n2 − 4n.
3
5
n+1
!
!

!
1
2
2016
4x
. Tính tổng T = f
+f
+ ··· + f
Câu 31. [3] Cho hàm số f (x) = x
4 +2
2017
2017
2017
2016
A. T = 1008.
B. T = 2017.
C. T = 2016.
D. T =
.
2017
Câu 32. Khối đa diện đều loại {3; 5} có số mặt
A. 30.
B. 8.
C. 20.
D. 12.
2
2n − 1
Câu 33. Tính lim 6
3n + n4
2

A. 1.
B. 0.
C. .
D. 2.
3
Câu 34. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 20.
B. 15, 36.
C. 24.
D. 3, 55.
Câu 35. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −4.
B. 4.
C. 2.
Câu 36. [2] Cho hàm số f (x) = x ln x. Giá trị f (e) bằng
2
C. 2e.
A. 2e + 1.
B. .
e
2

D. −2.

0

D. 3.





x = 1 + 3t




Câu 37. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua




z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là











x

=
−1
+
2t
x
=
−1
+
2t
x
=
1
+
3t
x = 1 + 7t

















A. 
D. 
.
y = −10 + 11t . B. 
y = −10 + 11t . C. 
y = 1 + 4t .
y=1+t
















z = 1 + 5t
z = 6 − 5t
z = −6 − 5t
z = 1 − 5t
Câu 38. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng

(S AB)
5a
2a
a
8a
.
B.
.
C.
.
D. .
A.
9
9
9
9
3
2
Câu 39. Hàm số y = −x + 3x − 1 đồng biến trên khoảng nào dưới đây?
A. (2; +∞).
B. (0; 2).
C. R.
D. (−∞; 1).
Câu 40. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1

A. k = .
B. k = .
C. k = .
D. k = .
18
9
15
6
Trang 3/11 Mã đề 1



Câu 41. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
A. −3.
B. .
C. − .
3
3

D. 3.

Câu 42.
√ Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18.
A. 3 3.
B. 8.
C. 9.
D. 27.
Câu 43. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là

A. 3.
B. 10.
C. 27.

D. 12.

Câu 44. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng là hình lăng trụ đều.
B. Hình lăng trụ tứ giác đều là hình lập phương.
C. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
Câu 45. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. Khơng tồn tại.
B. −7.
C. −3.

Câu 46. Thể tích của khối lập phương có cạnh bằng a 2


B. V = a3 2.
C. V = 2a3 .
A. 2a3 2.

D. −5.

2a3 2
.
D.
3


Câu 47. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. (−∞; +∞).
B. (1; 2).
C. [1; 2].

D. [−1; 2).

Câu 48. Biểu thức nào sau đây √
khơng có nghĩa
−3
−1
−1.
A. 0 .
B.

D. (−1)−1 .


C. (− 2)0 .

Câu 49. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 10 cạnh, 6 mặt.
Câu 50. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 5 mặt.
B. 6 mặt.
C. 3 mặt.


D. 4 mặt.

Câu 51. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
. Thể tích khối lăng trụ đã cho bằng
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
3


2 3
A. 3.
B. 2.
C. 1.
D.
.
3
x
Câu 52. Tính diện tích hình phẳng giới hạn bởi các đường
√ y = xe , y = 0, x = 1.
1
3
3
A. .
B. .
C.
.

D. 1.
2
2
2

Câu 53. [2]√Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 8 √
B. m = ±1.
C. m = ±3.
D. m = ± 2.
A. m = ± 3.
Câu 54. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
1
ab
ab
A. √
.
B. √
.
C. √
.
D. 2
.
a + b2
2 a2 + b2
a2 + b2
a2 + b2
Câu 55. Cho hai hàm y = f (x), y = g(x)
Z có đạo hàm

Z trên R. Phát biểu nào sau đây đúng?
A. Nếu f (x) = g(x) + 1, ∀x ∈ R thì

f 0 (x)dx =

g0 (x)dx.
Trang 4/11 Mã đề 1


Z
B. Nếu
Z
C. Nếu
Z
D. Nếu

f (x)dx =

Z

g0 (x)dx thì f (x) = g(x), ∀x ∈ R.

f (x)dx =

Z

g(x)dx thì f (x) = g(x), ∀x ∈ R.

f (x)dx =


Z

0

g(x)dx thì f (x) , g(x), ∀x ∈ R.

x2
Câu 56. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = , m = 0.
B. M = e, m = 0.
C. M = e, m = .
D. M = e, m = 1.
e
e
Câu 57. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối 12 mặt đều.
C. Khối bát diện đều. D. Khối tứ diện đều.
Câu 58. Tính lim
A. 0.

7n2 − 2n3 + 1
3n3 + 2n2 + 1
7
B. .
3


2
C. - .
3

D. 1.

1
Câu 59. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2) ∪ (−1; +∞). B. (−∞; −2] ∪ [−1; +∞). C. −2 ≤ m ≤ −1.
D. −2 < m < −1.
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 60. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là



a3 3
a3 2
a3 3
2
A.
.
B.
.
C. 2a 2.
D.
.

24
24
12
9t
Câu 61. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 2.
B. 0.
C. 1.
D. Vô số.
Câu 62. Khối đa diện đều loại {4; 3} có số cạnh
A. 12.
B. 10.

C. 30.

D. 20.
! x3 −3mx2 +m
1
Câu 63. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m , 0.
B. m ∈ (0; +∞).
C. m ∈ R.
D. m = 0.


Câu 64. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vuông góc
Thể tích khối chóp S .ABC √là

√ với đáy và S C = a 3.3 √
a3 3
a 3
2a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
2
4
9
12
Câu 65. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
.
C. log2 a =
.
D. log2 a = − loga 2.
A. log2 a = loga 2.

B. log2 a =
loga 2
log2 a
un
Câu 66. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. 0.
B. +∞.
C. −∞.
D. 1.
!
1
1
1
Câu 67. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
A. 2.
B. 1.
C. .
D. 0.
2
Trang 5/11 Mã đề 1


Câu 68. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. 0.

B. 3.
C. −3.
D. −6.
2−n
bằng
Câu 69. Giá trị của giới hạn lim
n+1
A. 2.
B. 1.
C. 0.
D. −1.
Câu 70. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = (−2; 1).
B. D = R.
C. D = [2; 1].
2

D. D = R \ {1; 2}.

Câu 71. Nếu khơng sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Một tứ diện đều và bốn hình chóp tam giác đều.
B. Bốn tứ diện đều và một hình chóp tam giác đều.
C. Năm hình chóp tam giác đều, khơng có tứ diện đều.
D. Năm tứ diện đều.
Câu 72. [1] Đạo hàm của hàm số y = 2 x là

1
1
.

D. y0 = x
.
ln 2
2 . ln x
Câu 73. Trong khơng gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu
! của A lên BC là
!
5
7
8
A. (2; 0; 0).
B.
; 0; 0 .
C.
; 0; 0 .
D.
; 0; 0 .
3
3
3
A. y0 = 2 x . ln 2.

B. y0 = 2 x . ln x.

C. y0 =

Câu 74. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 64cm3 .

B. 46cm3 .
C. 27cm3 .
D. 72cm3 .
Câu 75. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.




5 13
A. 2.
B. 26.
C.
.
D. 2 13.
13
Câu 76. Khối đa diện đều loại {3; 4} có số cạnh
A. 8.
B. 12.
C. 10.
D. 6.
Câu 77. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 − 2; m = 1.
B. M = e−2 + 1; m = 1.
−2
C. M = e + 2; m = 1.
D. M = e2 − 2; m = e−2 + 2.
Câu 78. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Hai mặt.
B. Ba mặt.

C. Một mặt.

D. Bốn mặt.

Câu 79. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng S B và AD bằng




a 2
a 2
A. a 3.
B.
.
C. a 2.
D.
.
3
2
Câu 80. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −1.
B. m = −2.
C. m = 0.

D. m = −3.

Câu 81. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 2.
B. 0.

C. 1.

D. 3.

Câu 82. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 6.
B. y(−2) = −18.
C. y(−2) = 22.
D. y(−2) = 2.
Trang 6/11 Mã đề 1


Câu 83. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 120 cm2 .
C. 1200 cm2 .
D. 160 cm2 .
cos n + sin n
Câu 84. Tính lim
n2 + 1
A. −∞.
B. 1.
C. 0.
D. +∞.
Câu 85. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 5.
B. V = 6.

C. V = 3.
D. V = 4.
Câu 86. Khối lập phương thuộc loại
A. {4; 3}.
B. {3; 4}.

C. {3; 3}.

D. {5; 3}.

Câu 87. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4




a3 3
a3 3
a3 3
a3 3
.
B.
.
C.

.
D.
.
A.
12
6
24
36
1
Câu 88. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 4.
B. 3.
C. 2.
D. 1.
Câu 89. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
9
1
1
2
B.
.
C. .
D.
.
A. .
5
10

5
10
tan x + m
Câu 90. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. (−∞; 0] ∪ (1; +∞). B. (1; +∞).
C. (−∞; −1) ∪ (1; +∞). D. [0; +∞).
Câu 91. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1728
23
1637
1079
A.
.
B.
.
C.
.
D.
.
4913
68
4913
4913
Câu 92. Khối đa diện loại {4; 3} có tên gọi là gì?

A. Khối bát diện đều. B. Khối lập phương.

C. Khối tứ diện đều.

D. Khối 12 mặt đều.

1 3
x − 2x2 + 3x − 1.
3
B. (−∞; 1) và (3; +∞). C. (1; +∞).
D. (−∞; 3).

Câu 93. Tìm tất cả các khoảng đồng biến của hàm số y =
A. (1; 3).

Câu 94. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −e2 .
B. −2e2 .
C. 2e4 .
D. 2e2 .
Câu 95. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó không rút tiền
ra.
A. 216 triệu.
B. 212 triệu.
C. 220 triệu.
D. 210 triệu.
Trang 7/11 Mã đề 1



mx − 4
Câu 96. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 26.
B. 45.
C. 67.
D. 34.
log 2x
Câu 97. [1229d] Đạo hàm của hàm số y =

x2
1 − 2 log 2x
1 − 2 ln 2x
1 − 4 ln 2x
1
0
0
.
B. y0 =
.
C.
y
=
.
D.
y
=

.
A. y0 = 3
2x ln 10
x3
x3 ln 10
2x3 ln 10
Câu 98. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A. −7.
B. −4.
C. −2.
D.
.
27
Câu 99. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = +∞.
B. lim f (x) = f (a).
x→a

x→a

x→a

D. lim+ f (x) = lim− f (x) = a.

C. f (x) có giới hạn hữu hạn khi x → a.

x→a

x→a


n−1
Câu 100. Tính lim 2
n +2
A. 1.
B. 3.

C. 2.

D. 0.

Câu 101. Khối đa diện đều loại {3; 5} có số cạnh
A. 8.
B. 12.

C. 20.

D. 30.

Câu 102. Trong các khẳng định sau, khẳng định nào sai?
A. Cả ba đáp án trên.
B. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.

C. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
D. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
Câu 103. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

αβ
α β

A. a = (a ) .
B. β = a β .
C. aα+β = aα .aβ .
D. aα bα = (ab)α .
a
x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
Câu 104. [3-1214d] Cho hàm số y =
x+2
tam giác
B thuộc (C), đoạn thẳng AB có độ dài bằng

√ đều ABI có hai đỉnh A, √
A. 2 3.
B. 2 2.
C. 2.
D. 6.
Câu 105. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 9.
B. Không tồn tại.
C. 13.

D. 0.

Câu 106. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Tăng lên (n − 1) lần. B. Không thay đổi.
C. Giảm đi n lần.
D. Tăng lên n lần.
x2 − 5x + 6

Câu 107. Tính giới hạn lim
x→2
x−2
A. 0.
B. 1.

C. −1.

D. 5.

Câu 108. [2-c] Giá trị nhỏ nhất của hàm số y = x ln x trên đoạn [e ; e] là
1
1
1
A. − .
B. − .
C. −e.
D. − 2 .
2e
e
e
x
Câu 109. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 +3)−log2 (2020−21−x )
A. log2 13.
B. log2 2020.
C. 2020.
D. 13.
2

−1


d = 30◦ , biết S BC là tam giác đều
Câu 110. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.
.
C.
.
D.
.
A.
9
16
13
26
Trang 8/11 Mã đề 1


Câu 111. [1] Đạo hàm của làm số y = log x là
1
1
ln 10

1
A. y0 =
.
B.
.
C. y0 =
.
D. y0 = .
x ln 10
10 ln x
x
x
x−2 x−1
x
x+1
Câu 112. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3).
B. (−3; +∞).
C. [−3; +∞).
D. (−∞; −3].
!4x

!2−x
2
3
Câu 113. Tập các số x thỏa mãn


3
2
"
!
#
"
!
#
2
2
2
2
A.
; +∞ .
B. −∞; .
C. − ; +∞ .
D. −∞; .
5
3
3
5
Câu 114. [12210d] Xét các số thực dương x, y thỏa mãn log3
nhất Pmin của P√= x + y.


18 11 − 29
2 11 − 3
A. Pmin =
. B. Pmin =
.
21
3

C. Pmin

1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ
x + 2y


9 11 + 19
=
.
9

D. Pmin


9 11 − 19
=
.
9

Câu 115. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?

A. 6.
B. 8.
C. 3.
D. 4.
Câu 116. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 72.
B. −7, 2.
C. 7, 2.

D. 0, 8.

Câu 117. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc
60◦ . Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n.
Thể tích khối
√ chóp S .ABMN là 3 √


3
5a 3
a 3
4a3 3
2a3 3
A.
.
B.
.
C.
.
D.
.

3
2
3
3
Câu 118. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R.
B. D = R \ {1}.
C. D = (0; +∞).
D. D = R \ {0}.
Z 3
x
a
a
Câu 119. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 4.
B. P = 16.
C. P = −2.
D. P = 28.
2n − 3
Câu 120. Tính lim 2
bằng
2n + 3n + 1
A. 0.
B. +∞.

C. −∞.
D. 1.
Câu 121. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc
45◦ . Tính
√ thể tích của khối chóp 3S .ABC theo a


3
a
a3 15
a3 15
a 5
A.
.
B.
.
C.
.
D.
.
25
3
25
5
Câu 122. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.
B. 1.
C. Vô nghiệm.
D. 3.
[ = 60◦ , S O

Câu 123. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S√BC) bằng


a 57
2a 57
a 57
A. a 57.
B.
.
C.
.
D.
.
19
19
17
Trang 9/11 Mã đề 1


Câu 124. Khối đa diện đều loại {3; 3} có số cạnh
A. 6.
B. 4.

C. 8.

D. 5.

Câu 125. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức

P = (2x2 + y)(2y2 + x) + 9xy là
27
.
A. 12.
B. 18.
C. 27.
D.
2
log(mx)
Câu 126. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m ≤ 0.
B. m < 0 ∨ m > 4.
C. m < 0 ∨ m = 4.
D. m < 0.
Câu 127. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 2.
B. 6.
C. 1.

D. −1.

Câu 128. Bát diện đều thuộc loại
A. {5; 3}.
B. {3; 4}.

C. {4; 3}.
D. {3; 3}.



Câu 129. Phần thực
√ và phần ảo của số√phức z = 2 − 1 − 3i lần lượt√l

A. Phần thực là 2, √
phần ảo là 1 − √
3.
B. Phần thực là √2 − 1, phần ảo là −√ 3.
C. Phần thực là 1 − 2, phần ảo là − 3.
D. Phần thực là 2 − 1, phần ảo là 3.
Câu 130. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
B. m > .
C. m ≥ .
D. m < .
A. m ≤ .
4
4
4
4
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/11 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ

Mã đề thi 1
1. A
3.

2.

C

4. A

B

5.

D

6.

B

7.

C

8.

C

9.


C

10.

C

11.

C

12.

C

14.

C

D

13.
15.
17.
19.

16.

B

18.


C
D

22.

23. A

D
B

24.

25.

D

C

26. A
28.

27. A
D

29.

D

30. A


31. A

32.
B

34.
D

35.

C
B
D

36.

37. A
39.

C

20.

B

21.

33.


B

38. A
B

41.

42. A

B

43. A

44.

45. A

C

46. A

47. A

48. A

49.

B
B


50.

D

51.

52.

D

53.

54.
56.
60.

55.

C
B

58.

57.

C
B

59.


C

C

61. A

B

63.

62. A
64.

D

66. A
68.

D

65.

B

67.

B

69.


C
1

D

D


70.

71. A

B
C

74.
76.

D

73.

72. A

77. A

B

78.


79.

D

80.

B

81.

82.

B

83. A

84.

C

75.

D
B
D

85.

C


86. A

87. A
D

88.

89.

B

90.

B

91.

92.

B

93.

B

95.

B

94. A

96.

D

98.

97.

C

100.

99.
D

102.

C

C
B

101.

C

103.

D
B


105.

104. A
106.

C

D

107.

108. A

C

109. A

110.

C

112.

111. A
D

113.

C

C

114.

B

115.

116.

B

117.

B

118. A

119. A

120. A

121.

C

122. A

123.


C

124. A

125.

B

127.

B

129.

B

126.
128.

C
B

130. A

2



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×