Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg (936)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (150.35 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

log 2x
Câu 1. [3-1229d] Đạo hàm của hàm số y =

x2
1 − 4 ln 2x
1
1 − 2 log 2x
0
0
A. y0 =
.
B.
y
=
.
C.
y
=
.
2x3 ln 10
2x3 ln 10
x3


log7 16
Câu 2. [1-c] Giá trị của biểu thức
bằng
log7 15 − log7 15
30
A. −2.
B. 2.
C. −4.
Câu 3. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {0}.
B. D = (0; +∞).

C. D = R \ {1}.

D. y0 =

1 − 2 ln 2x
.
x3 ln 10

D. 4.
D. D = R.

Câu 4. [2] Cho hàm số f (x) = 2 .5 . Giá trị của f (0) bằng
x

x

0


1
.
ln 10
Câu 5. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
B. a 6.
C. 2a 6.
D.
.
A. a 3.
2
Câu 6. [1] Cho a > 0, a , 1. Giá trị của biểu thức log a1 a2 bằng
1
1
B. −2.
C. 2.
D. − .
A. .
2
2
Câu 7. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ nhất
của |z + 2 + i|





12 17
A. 34.
B. 68.
C.
.
D. 5.
17
3
2
Câu 8. Hàm số y = 2x + 3x + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (0; 1).
B. (−∞; 0) và (1; +∞). C. (−∞; −1) và (0; +∞). D. (−1; 0).
A. f 0 (0) = ln 10.

B. f 0 (0) = 1.

C. f 0 (0) = 10.

D. f 0 (0) =

Câu 9. Cho khối chóp S .ABC√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
√ tích khối chóp S .ABC
√là
√ với đáy và S C = a 3. 3Thể

3
3
a 3

2a 6
a 6
a3 3
A.
.
B.
.
C.
.
D.
.
4
9
12
2
5
Câu 10. Tính lim
n+3
A. 0.
B. 1.
C. 2.
D. 3.
Câu 11. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 3.

B. 4.


C. 2.

D. 1.

Câu 12. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 10.
B. P = −21.
C. P = −10.
D. P = 21.
Trang 1/10 Mã đề 1



Câu 13. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
B. − .
C. −3.
D. 3.
A. .
3
3
!
!
!
4x
1
2
2016

Câu 14. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T = 2017.
B. T = 1008.
C. T =
.
D. T = 2016.
2017
!
3n + 2
2
+ a − 4a = 0. Tổng các phần tử
Câu 15. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
n+2
của S bằng
A. 5.
B. 3.
C. 2.
D. 4.
Câu 16. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun √
z.




5 13
A.
.
B. 2 13.
C. 26.
D. 2.
13
1
Câu 17. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = e + 1.
B. xy = e − 1.
C. xy0 = −ey + 1.
D. xy0 = −ey − 1.
Câu 18. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh
! đề nào dưới đây đúng?
!
1
1
A. Hàm số nghịch biến trên khoảng −∞; .
B. Hàm số đồng biến trên khoảng ; 1 .
3
3

!
1
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số nghịch biến trên khoảng ; 1 .
3
Câu 19. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 + ln x.
B. y0 = 1 − ln x.

C. y0 = ln x − 1.
D. y0 = x + ln x.
1
Câu 20. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; 3).
B. (−∞; 1) và (3; +∞). C. (1; +∞).
D. (−∞; 3).
2n − 3
Câu 21. Tính lim 2
bằng
2n + 3n + 1
A. 0.
B. 1.
C. −∞.
D. +∞.
Câu 22. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối tứ diện đều.

C. Khối bát diện đều.


D. Khối lập phương.

Câu 23. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tam giác và một hình chóp tứ giác.
B. Một hình chóp tứ giác và một hình chóp ngũ giác.
C. Hai hình chóp tứ giác.
D. Hai hình chóp tam giác.
ln2 x
m
Câu 24. [3] Biết rằng giá trị lớn nhất của hàm số y =
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 24.
B. S = 135.
C. S = 32.
D. S = 22.
cos n + sin n
Câu 25. Tính lim
n2 + 1
A. +∞.
B. 0.
C. 1.
D. −∞.
Câu 26. Bát diện đều thuộc loại
A. {3; 4}.
B. {3; 3}.


C. {5; 3}.

D. {4; 3}.
Trang 2/10 Mã đề 1


Câu 27. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 6 cạnh, 6 mặt. C. 5 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 5 mặt.
x+3
nghịch biến trên khoảng
Câu 28. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x−m
(0; +∞)?
A. 1.
B. 3.
C. Vô số.
D. 2.
Câu 29. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = 4 + .
B. T = e + 1.
C. T = e + .
D. T = e + 3.
e
e
Câu 30. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng




a 2
a 2
.
B.
.
C. a 3.
D. a 2.
A.
2
3
Câu 31. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối bát diện đều. C. Khối 12 mặt đều.
D. Khối lập phương.
Câu 32. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối tứ diện đều.


Câu 33. [12215d] Tìm m để phương trình 4 x+
9
3
B. 0 ≤ m ≤ .
A. 0 ≤ m ≤ .
4
4

1−x2


C. Khối 12 mặt đều.


− 4.2 x+

1−x2

D. Khối 20 mặt đều.

− 3m + 4 = 0 có nghiệm

C. m ≥ 0.

3
D. 0 < m ≤ .
4

Câu 34. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −2 ≤ m ≤ 2.
B. m ≥ 3.
C. m ≤ 3.
D. −3 ≤ m ≤ 3.
Câu 35. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác S AB đều và nằm trong mặt
Thể tích khối chóp

√ phẳng vng góc với 3(ABCD).
√ S .ABCD là
3

3

a
3
a
2
a
3
A. a3 3.
B.
.
C.
.
D.
.
4
2
2
q
Câu 36. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].
B. m ∈ [0; 1].
C. m ∈ [−1; 0].
D. m ∈ [0; 2].
Câu 37. Xét hai câu sau
Z
Z

Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên sai.

B. Cả hai câu trên đúng. C. Chỉ có (I) đúng.

Câu 38. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 0.
B. 9.
C. 13.
!4x
!2−x
2
3
Câu 39. Tập các số x thỏa mãn


3 # 2
#
"
!
2
2
2

A. −∞; .
B. −∞; .
C.
; +∞ .
3
5
5

D. Chỉ có (II) đúng.
D. Khơng tồn tại.

"

!
2
D. − ; +∞ .
3
Trang 3/10 Mã đề 1


Câu 40. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; 2).
B. (0; +∞).

C. (−∞; 0) và (2; +∞). D. (−∞; 2).

Câu 41. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1202 m.
B. 2400 m.

C. 6510 m.
D. 1134 m.
Câu 42. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai mặt.
B. Năm mặt.
C. Bốn mặt.
Câu 43. Dãy số nào sau đây có giới hạn là 0?
n2 − 2
n2 − 3n
.
B.
u
=
.
A. un =
n
n2
5n − 3n2

C. un =

n2 + n + 1
.
(n + 1)2

D. Ba mặt.
D. un =

1 − 2n
.

5n + n2

1
Câu 44. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.
B. 0 < m ≤ 1.
C. 2 ≤ m ≤ 3.
D. 2 < m ≤ 3.
d = 120◦ .
Câu 45. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
C. 3a.
D. 2a.
A. 4a.
B.
2
Câu 46. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−1; 1).
B. (1; +∞).
C. (−∞; −1).
D. (−∞; 1).
Câu 47. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + sin x cos x.
B. 1 − sin 2x.
C. 1 + 2 sin 2x.

D. −1 + 2 sin 2x.


Câu 48. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≤ .
B. m > .
C. m ≥ .
D. m < .
4
4
4
4
Câu 49. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất khơng thay đổi?
A. 17 tháng.
B. 15 tháng.
C. 16 tháng.
D. 18 tháng.
Câu 50. [1] Đạo hàm của làm số y = log x là
1
1
.
B. y0 = .
A. y0 =
x ln 10
x

2
Câu 51. Giá trị của lim(2x − 3x + 1) là

C. y0 =

x→1

A. 1.

B. 0.

C. 2.

ln 10
.
x

D.

1
.
10 ln x

D. +∞.

Câu 52. [2] Tìm m để giá trị lớn nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 8 √
C. m = ±3.
D. m = ± 2.
A. m = ±1.
B. m = ± 3.

Câu 53. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 1.
B. 2.
C. 6.
D. −1.
x
9
Câu 54. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. 1.
B. −1.
C. .
D. 2.
2
Câu 55. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối

√ chóp S .ABCD là

3
3
a 3
a3 6
a3 3
a 2
A.
.
B.

.
C.
.
D.
.
16
48
48
24
Trang 4/10 Mã đề 1


2

2

sin x
Câu 56.
+ 2cos x lần lượt
√ [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm√số f (x) = 2
√ là
A. 2 2 và 3.
B. 2 và 3.
C. 2 và 3.
D. 2 và 2 2.

Câu 57. [1] Tập
! xác định của hàm số y! = log3 (2x + 1) là
!
1

1
1
A. − ; +∞ .
B.
; +∞ .
C. −∞; .
2
2
2

!
1
D. −∞; − .
2

Câu 58. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. 3.
C. 1.
D. Vô nghiệm.
Câu 59. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 3, 5 triệu đồng.
B. 50, 7 triệu đồng.
C. 20, 128 triệu đồng. D. 70, 128 triệu đồng.
Câu 60. Biểu thức nào sau đây khơng có nghĩa
A. (−1)−1 .
B. 0−1 .



C. (− 2)0 .

D.


−1.

−3

Câu 61. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (2; +∞).
C. R.
D. (0; 2).
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 62. [3-12217d] Cho hàm số y = ln
x
+
1
A. xy0 = −ey − 1.
B. xy0 = −ey + 1.
C. xy0 = ey + 1.
D. xy0 = ey − 1.
Câu 63. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều.

C. Khối tứ diện đều.


x2 − 9
Câu 64. Tính lim
x→3 x − 3
A. 6.
B. +∞.

C. 3.

Câu 65. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 2.

B. 4.

D. Khối lập phương.

D. −3.
1
3|x−1|

C. 1.

= 3m − 2 có nghiệm duy

D. 3.

1
Câu 66. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3

biến trên R.
A. −2 < m < −1.
B. (−∞; −2) ∪ (−1; +∞). C. (−∞; −2] ∪ [−1; +∞). D. −2 ≤ m ≤ −1.
Câu 67. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục thực.
B. Trục ảo.
C. Hai đường phân giác y = x và y = −x của các góc tọa độ.
D. Đường phân giác góc phần tư thứ nhất.
Câu 68. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 1.

B. 3.

C. 2.

1
3|x−1|

= 3m − 2 có nghiệm duy

D. 4.

Câu 69. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
A. .
B. 6.
C. 9.

D. .
2
2
Câu 70. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
Trang 5/10 Mã đề 1


B. Cả ba câu trên đều sai.
C. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
D. F(x) = G(x) trên khoảng (a; b).
Câu 71. Khối đa diện đều loại {3; 5} có số mặt
A. 20.
B. 12.

C. 8.

D. 30.

Câu 72. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 25 triệu đồng.
B. 2, 22 triệu đồng.
C. 3, 03 triệu đồng.
D. 2, 20 triệu đồng.
Câu 73. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy

một góc 45◦ và AB = 3a, BC = 4a. Thể
√ tích khối chóp S .ABCD là
3
10a 3
.
C. 40a3 .
D. 20a3 .
A. 10a3 .
B.
3
Câu 74. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a 3
a
A. .
B.
.
C. a.
D. .
2
2
3
Câu 75. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 24 m.
B. 16 m.
C. 8 m.
D. 12 m.

Câu 76. Khối đa diện đều loại {4; 3} có số đỉnh
A. 8.
B. 10.

C. 6.

D. 4.
!x

1

9
C. − log2 3.

D. 1 − log2 3.

C. D = R \ {1; 2}.

D. D = [2; 1].

Câu 77. [2] Tổng các nghiệm của phương trình 31−x = 2 +
A. − log3 2.

B. log2 3.

Câu 78. [1] Tập xác định của hàm số y = 4
A. D = R.
B. D = (−2; 1).

x2 +x−2




Câu 79. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim− f (x) = f (b).
B. lim+ f (x) = f (a) và lim− f (x) = f (b).
x→a

x→b

x→a

x→b

C. lim− f (x) = f (a) và lim+ f (x) = f (b).

x→a

x→b

x→a

x→b

D. lim+ f (x) = f (a) và lim+ f (x) = f (b).

[ = 60◦ , S A ⊥ (ABCD).
Câu 80. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh


√ S C là a. Thể tích khối chóp S .ABCD là
3
3

a 2
a 3
a3 2
3
A.
.
B.
.
C. a 3.
D.
.
4
6
12
Câu 81. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 5}.
B. {3; 4}.
C. {4; 3}.
D. {5; 3}.
Câu 82. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
Trang 6/10 Mã đề 1



(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (III).

B. (I) và (II).

x2 − 5x + 6
Câu 83. Tính giới hạn lim
x→2
x−2
A. 1.
B. 5.

C. Cả ba mệnh đề.

D. (II) và (III).

C. −1.

D. 0.

Câu 84. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng




14 3

20 3
.
C.
.
D. 8 3.
A. 6 3.
B.
3
3
un
Câu 85. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. 1.
B. +∞.
C. −∞.
D. 0.
Câu 86. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lập phương.
B. Hình lăng trụ.
C. Hình tam giác.

D. Hình chóp.

Câu 87. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −1.
B. m = −2.
C. m = −3.

D. m = 0.


Câu 88. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 9 lần.
B. Tăng gấp 3 lần.
C. Tăng gấp 27 lần.
D. Tăng gấp 18 lần.
Câu 89. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11
9
B.
.
C. 7.
D. 5.
A. .
2
2



x=t




Câu 90. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)





z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
B. (x + 3)2 + (y + 1)2 + (z + 3)2 = .
A. (x + 3)2 + (y + 1)2 + (z − 3)2 = .
4
4
9
9
2
2
2
2
2
2
C. (x − 3) + (y − 1) + (z − 3) = .
D. (x − 3) + (y + 1) + (z + 3) = .
4
4
log2 240 log2 15
Câu 91. [1-c] Giá trị biểu thức

+ log2 1 bằng
log3,75 2 log60 2
A. 4.
B. −8.
C. 3.
D. 1.

Câu 92. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
2

Câu 93. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 4.
B. 3.
C. 5.

D. 2.

Câu 94. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 2.
B. 0.
C. 3.

D. 1.

Câu 95. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d ⊥ P.
B. d nằm trên P hoặc d ⊥ P.
C. d song song với (P).
D. d nằm trên P.
Trang 7/10 Mã đề 1


Câu 96. Tính lim

x→2

A. 0.

x+2
bằng?
x
B. 2.

C. 3.

D. 1.

0 0 0 0
0
Câu 97.√ [2] Cho hình lâp phương
√ bằng
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
a 6
a 3
a 6
a 6
A.
.
B.
.
C.
.
D.
.

3
2
2
7
Câu 98. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vô nghiệm.
B. 3.
C. 1.
D. 2.

Câu 99. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị nhỏ nhất trên K.
C. f (x) xác định trên K.

B. f (x) có giá trị lớn nhất trên K.
D. f (x) liên tục trên K.

Câu 100. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 3 mặt.
C. 6 mặt.

D. 9 mặt.

Câu 101. Khối đa diện đều loại {4; 3} có số cạnh
A. 30.
B. 12.

D. 20.


C. 10.

Câu 102. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9
tháng thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không
thay đổi trong thời gian gửi.
A. 0, 7%.
B. 0, 8%.
C. 0, 6%.
D. 0, 5%.
x−2
Câu 103. Tính lim
x→+∞ x + 3
2
A. −3.
B. − .
C. 2.
D. 1.
3
Câu 104. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó
Q0 là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số
lượng vi khuẩn đạt 100.000 con?
A. 24.
B. 20.
C. 15, 36.
D. 3, 55.
Câu 105. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18. √
A. 9.
B. 8.
C. 27.
D. 3 3.

Câu 106. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
A. − .
B. −e.
C. − 2 .
e
e
Câu 107. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lập phương.
B. Khối bát diện đều.
C. Khối lăng trụ tam giác.
D. Khối tứ diện.

D. −

1
.
2e

Câu 108. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
B. Số đỉnh của khối chóp bằng số mặt của khối chóp.
C. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
D. Số cạnh của khối chóp bằng số mặt của khối chóp.
Câu 109. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 + 2e
1 + 2e
1 − 2e

A. m =
.
B. m =
.
C. m =
.
D. m =
.
4e + 2
4 − 2e
4 − 2e
4e + 2
Câu 110. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tam giác.
B. Hai khối chóp tứ giác.
Trang 8/10 Mã đề 1


C. Một khối chóp tam giác, một khối chóp ngữ giác.
D. Một khối chóp tam giác, một khối chóp tứ giác.
Câu 111. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một.
B. Khơng có.
C. Có hai.
D. Có một hoặc hai.

Câu 112. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị nhỏ nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới đây?
"

!
5
5
A. [3; 4).
B. 2; .
C. (1; 2).
D.
;3 .
2
2
Câu 113. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 14 năm.
B. 10 năm.
C. 12 năm.
D. 11 năm.
Câu 114. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1

A. 7.

B. 5.

C. 9.

D. 0.

Câu 115. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai

quyển sách cùng một môn nằm cạnh nhau là
1
1
2
9
.
B. .
C.
.
D. .
A.
10
5
10
5
Câu 116. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa
√ hai đường thẳng BD và S C bằng



a 6
a 6
a 6
A.
C.
.
B. a 6.
.
D.

.
3
6
2
Câu 117. [1] Đạo hàm của hàm số y = 2 x là
1
.
A. y0 = 2 x . ln 2.
B. y0 =
ln 2
Câu 118. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.
4x + 1
bằng?
x→−∞ x + 1
B. 4.

C. y0 =

1
2 x . ln

x

.

D. y0 = 2 x . ln x.

C. Khối 20 mặt đều.


D. Khối bát diện đều.

C. 2.

D. −4.

Câu 119. [1] Tính lim
A. −1.

Câu 120. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
√3
4
Câu 121. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
7
2
5
5
B. a 3 .
C. a 3 .
D. a 8 .
A. a 3 .
3

Câu 122. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e.

B. e5 .
C. e2 .
D. e3 .

Câu 123. [1] Biết log6 a = 2 thì log6 a bằng
A. 4.
B. 36.
C. 108.
D. 6.
Câu 124. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

A. aαβ = (aα )β .
B. β = a β .
C. aα bα = (ab)α .
D. aα+β = aα .aβ .
a
Trang 9/10 Mã đề 1


Câu 125. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m < 3.
C. m ≥ 3.
D. m > 3.
2

Câu 126. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log2 3.

B. 1 − log3 2.
C. 2 − log2 3.

D. 3 − log2 3.

Câu 127. Khối đa diện đều loại {3; 3} có số cạnh
A. 4.
B. 8.

D. 5.

C. 6.

Câu 128. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 2.
B. 3.
C. Vô số.
D. 1.
Câu 129. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 9 năm.
B. 8 năm.
C. 10 năm.
D. 7 năm.
Câu 130. [4-1246d] Trong tất cả
√ các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn√nhất của |z|
A. 1.
B. 3.

C. 2.
D. 5.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

D

2.

3.

D

4. A

5.

6.

B

7.


C

9.

C

C
B
D

8.
10. A

11. A

12.

B

13. A

14.

B

15.
17.

D


16. A
18.

B

19. A

20.

21. A

22.
D

23.
25.

B

28.

29.

D

30. A

31. A

32.


33. A

34.

35.

D

D

47.

55.

D

C
C

42.

D

44.

D

48. A


C

50. A
52.

B

D

54. A

C

56. A

B

57. A

58.

59.

60.

C

61.
63.


D

46. A

B

53.

C

40.

C

43.

51.

B

38. A
D

49.

C

36.

B


39.

45.

D

26. A
D

41.

B

24.

27.

37.

D

D

62.

B

C
B

D

64. A

65.

C

66.

67.

C

68. A
1

D


69.

D

72.

71. A
D

73.

75.
79.

78. A
80. A

B

81. A

82.
C

85.
87.

D
B
B

93. A
95.

B

86.

C

88.


C

90.

D

92.

D

94.

B

96.

B
D

98.

97. A
D

99.

101.

102. A

104.

C
D

106.
108.

B

84. A

89. A
91.

C

76. A
C

83.

B

74.

B

77.


C

70.

B

B

103.

D

105.

D

107.

D

109. A

110.

D

111.

D


112.

D

113.

D

114.

C

115. A

116.

C

117. A

118.

C

119.

B
B

120.


B

121.

122.

B

123. A

124.

B

125.

C

127.

C

126.

C

128. A
130.


129. A
C

2



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×