Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg (496)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (150.17 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 11 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 4).
B. (1; 3; 2).
C. (2; 4; 6).
D. (2; 4; 3).
Câu 2. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng (AB0C)
và (A0C 0√
D) bằng



a 3
a 3
2a 3
.
B.
.
C.
.
D. a 3.
A.


2
2
3
Câu 3. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
Thể tích khối chóp S .ABCD là
√ phẳng vng góc với 3(ABCD).


a3 2
a 3
a3 3
.
B.
.
C.
.
D. a3 3.
A.
2
2
4

Câu 4. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể tích
khối nón đã cho

√ là


πa3 3

πa3 3
πa3 6
πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =
.
3
2
6
6
x+1
Câu 5. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
A. .
B. .
C. .
D. 1.
6
2
3
Câu 6. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm

1
1
1
1
A. m ≥ .
B. m ≤ .
C. m < .
D. m > .
4
4
4
4
Câu 7. Khối đa diện đều loại {3; 3} có số cạnh
A. 4.
B. 6.
C. 5.
D. 8.
Câu 8. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
ln 2
B. 2.
C.
.
D. 1.
A. .
2
2
Câu 9. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 3 đỉnh, 3 cạnh, 3 mặt. B. 6 đỉnh, 6 cạnh, 4 mặt. C. 4 đỉnh, 8 cạnh, 4 mặt. D. 4 đỉnh, 6 cạnh, 4 mặt.
Câu 10. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao

cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
3
9
A. .
B. 1.
C. .
D. 3.
2
2
9x
Câu 11. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
B. 2.
C. 1.
D. −1.
A. .
2
Câu 12. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a
a 3
A. a.
B. .
C. .
D.
.

3
2
2
Câu 13. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
đến đường thẳng BD0 bằng
Trang 1/11 Mã đề 1



c a2 + b2
A. √
.
a2 + b2 + c2




b a2 + c2
abc b2 + c2
a b2 + c2
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
1

Câu 14. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = −e + 1.
B. xy = e − 1.
C. xy0 = ey + 1.
D. xy0 = −ey − 1.
x−3
bằng?
x→3 x + 3
A. −∞.
B. 0.
2x + 1
Câu 16. Tính giới hạn lim
x→+∞ x + 1

Câu 15. [1] Tính lim

A. −1.

B. 1.

C. 1.

C.


1
.
2

D. +∞.

D. 2.

Câu 17. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu
của B, C lên các cạnh AC, AB. Tọa độ hình chiếu
!
! của A lên BC là
!
7
5
8
A.
; 0; 0 .
B. (2; 0; 0).
C.
; 0; 0 .
D.
; 0; 0 .
3
3
3
Câu 18. Khối lập phương thuộc loại
A. {5; 3}.
B. {3; 3}.


D. {4; 3}.
!
3n + 2
2
Câu 19. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 5.
B. 4.
C. 2.
D. 3.
Z 1
6
2
3
Câu 20. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
. Tính
f (x)dx.
0
3x + 1
A. 6.

C. {3; 4}.

B. 2.

C. −1.
D. 4.

√3
Câu 21. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga a bằng
1
1
C. −3.
D. − .
A. 3.
B. .
3
3
Câu 22. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
ab
1
ab
A. √
.
B. 2
.
C. √
.
D. √
.
2
2
2
2
2
a +b

a +b
a +b
2 a2 + b2
Câu 23. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
A. V = S h.
B. V = 3S h.
C. V = S h.
3

1
D. V = S h.
2

Câu 24. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối tứ diện.
B. Khối lập phương.
C. Khối lăng trụ tam giác.
D. Khối bát diện đều.
Câu 25. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba cạnh.
B. Năm cạnh.
C. Hai cạnh.

D. Bốn cạnh.

Câu 26. Khối đa diện đều loại {5; 3} có số mặt
A. 20.
B. 8.


D. 30.

C. 12.

Câu 27. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = 0.
B. m = −3.
C. m = −2.

D. m = −1.
Trang 2/11 Mã đề 1


Câu 28. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)

cùng vng góc với đáy, S C = a √3. Thể tích khối chóp S .ABCD

a3
a3 3
a3 3
A.
.
B.
.
C.
.
D. a3 .
3
3

9


Câu 29. Phần thực√và phần ảo của số √
phức z = 2 − 1 − 3i lần lượt √l

B. Phần thực là 2 −√1, phần ảo là − √3.
A. Phần thực là √2, phần ảo là 1 − √3.
C. Phần thực là 2 − 1, phần ảo là 3.
D. Phần thực là 1 − 2, phần ảo là − 3.
Câu 30. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 3 lần.
B. Tăng gấp 9 lần.
C. Tăng gấp 27 lần.
D. Tăng gấp 18 lần.
Câu 31. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −6.
B. 3.
C. 0.
D. −3.
8
Câu 32. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 82.
B. 96.
C. 81.
D. 64.
1 − n2
Câu 33. [1] Tính lim 2

bằng?
2n + 1
1
1
1
A. − .
B. .
C. .
D. 0.
2
2
3
Câu 34. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 0.
B. 1.
C. 2.
D. 3.
 π π
Câu 35. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 1.
B. 7.
C. −1.
D. 3.
Câu 36. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. [6, 5; +∞).
B. (−∞; 6, 5).
C. (4; +∞).

D. (4; 6, 5].


Câu 37. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
1 − 2n
Câu 38. [1] Tính lim
bằng?
3n + 1
2
2
1
A. 1.
B. .
C. − .
D. .
3
3
3
x−1
Câu 39. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
√ có độ dài bằng

√ đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB
A. 2 3.
B. 2.

C. 2 2.
D. 6.
Câu 40. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m ≤ 3.
C. m < 3.
D. m > 3.
Câu 41. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 3
a3 6
a3 6
a 6
A.
.
B.
.
C.
.
D.
.
24
24
8

48
Câu 42. [1] Đạo hàm của làm số y = log x là
ln 10
1
1
1
A. y0 =
.
B. y0 =
.
C.
.
D. y0 = .
x
x ln 10
10 ln x
x
Trang 3/11 Mã đề 1


Câu 43. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 70, 128 triệu đồng. B. 20, 128 triệu đồng. C. 3, 5 triệu đồng.
D. 50, 7 triệu đồng.
Câu 44. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
10

20
40
20
C50
.(3)40
C50
.(3)20
C50
.(3)10
C50
.(3)30
.
B.
.
C.
.
D.
.
A.
450
450
450
450
Câu 45. Khối đa diện đều loại {5; 3} có số đỉnh
A. 20.
B. 12.
C. 30.
D. 8.
4x + 1
bằng?

Câu 46. [1] Tính lim
x→−∞ x + 1
A. −4.
B. 4.
C. 2.
D. −1.
Câu 47. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ
√ thức |z − 1 + 3i| = 3. Tìm
√ min |z − 1 − i|.
A. 2.
B. 1.
C. 2.
D. 10.
3
2
Câu 48. Giá
√ trị cực đại của hàm số y =
√ x − 3x − 3x + 2

A. 3 − 4 2.
B. −3 + 4 2.
C. 3 + 4 2.


D. −3 − 4 2.

x2
Câu 49. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1

1
B. M = , m = 0.
C. M = e, m = 1.
D. M = e, m = 0.
A. M = e, m = .
e
e

3
4
Câu 50. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
7
5
5
2
A. a 3 .
B. a 8 .
C. a 3 .
D. a 3 .
Câu 51. Khối đa diện đều loại {3; 4} có số mặt
A. 8.
B. 6.

C. 10.

D. 12.
2

Câu 52. Tổng diện tích các mặt của một khối lập phương bằng 96cm . Thể tích của khối lập phương đó
là:

A. 84cm3 .
B. 64cm3 .
C. 48cm3 .
D. 91cm3 .
Câu 53. [2] Tìm m để giá trị lớn nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 8 √
A. m = ±1.
B. m = ± 3.
C. m = ±3.
D. m = ± 2.
Câu 54. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.
B. 1.
C. Vô nghiệm.
D. 3.
x2 − 5x + 6
Câu 55. Tính giới hạn lim
x→2
x−2
A. 1.
B. 5.
x3 − 1
Câu 56. Tính lim
x→1 x − 1
A. −∞.
B. +∞.

C. 0.

D. −1.


C. 3.

D. 0.

Câu 57. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 1; m = 1.
B. M = e−2 + 2; m = 1.
C. M = e2 − 2; m = e−2 + 2.
D. M = e−2 − 2; m = 1.
2

Câu 58. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể
√ tích khối chóp S .ABCD là
3
10a 3
A. 40a3 .
B.
.
C. 20a3 .
D. 10a3 .
3
Trang 4/11 Mã đề 1


log2 240 log2 15

+ log2 1 bằng
log3,75 2 log60 2
B. −8.

C. 3.

Câu 59. [1-c] Giá trị biểu thức
A. 4.

D. 1.

Câu 60. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tam giác.
B. Một hình chóp tứ giác và một hình chóp ngũ giác.
C. Hai hình chóp tứ giác.
D. Một hình chóp tam giác và một hình chóp tứ giác.



x=t




Câu 61. Trong khơng gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)




z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).

9
9
B. (x + 3)2 + (y + 1)2 + (z + 3)2 = .
A. (x + 3)2 + (y + 1)2 + (z − 3)2 = .
4
4
9
9
2
2
2
2
2
2
C. (x − 3) + (y + 1) + (z + 3) = .
D. (x − 3) + (y − 1) + (z − 3) = .
4
4
Câu 62. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là√

a3
a3
2a3 3
4a3 3
A.
.
B.
.
C.

.
D.
.
3
6
3
3
Câu 63. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; 3; 3).
B. A0 (−3; −3; −3).
C. A0 (−3; 3; 1).
D. A0 (−3; −3; 3).
Câu 64. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; −1).
B. (−1; 1).
C. (−∞; 1).

D. (1; +∞).

1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
B. xy = −e − 1.
C. xy0 = ey + 1.
D. xy0 = −ey + 1.

Câu 65. [3-12217d] Cho hàm số y = ln

A. xy0 = ey − 1.

Câu 66. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 4 mặt.
C. 6 mặt.

D. 9 mặt.

2
Câu 67. [2] Tìm m để giá trị nhỏ nhất√của hàm số y = 2x3 + (m√
+ 1)2 x trên [0; 1] bằng 2
A. m = ±1.
B. m = ± 3.
C. m = ± 2.
D. m = ±3.

Câu 68. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog
A. 5.

B. 25.

C.


a

5




bằng
5.

Câu 69. [1] Giá trị của biểu thức 9log3 12 bằng
A. 24.
B. 4.
C. 144.
Z 2
ln(x + 1)
Câu 70. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. 1.
B. 0.
C. 3.

D.

1
.
5

D. 2.

D. −3.

Câu 71. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất của hàm số. Khi đó tổng

√M + m


A. 16.
B. 8 2.
C. 7 3.
D. 8 3.
Trang 5/11 Mã đề 1


2

Câu 72. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
1
1
A. √ .
B. 2 .
C. 3 .
e
2e
2 e

D.

2
.
e3

Câu 73. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập

vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 10 năm.
B. 8 năm.
C. 9 năm.
D. 7 năm.
Câu 74. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; 2).
B. (−∞; 0) và (2; +∞). C. (−∞; 2).

D. (0; +∞).

Câu 75. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị nhỏ nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới đây?
"
!
5
5
A. (1; 2).
B.
;3 .
C. [3; 4).
D. 2; .
2
2


ab.

Câu 76. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là

A. Phần thực là −3, phần ảo là 4.
B. Phần thực là 3, phần ảo là −4.
C. Phần thực là −3, phần ảo là −4.
D. Phần thực là 3, phần ảo là 4.
Câu 77. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (−1; −7).
B. (0; −2).
C. (1; −3).
Câu 78. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 4.

B. 3.

C. 2.

D. (2; 2).
1
3|x−1|

= 3m − 2 có nghiệm duy

D. 1.

Câu 79. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 1200 cm2 .
B. 160 cm2 .
C. 160 cm2 .
D. 120 cm2 .

x−1 y z+1
Câu 80. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
= =

2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x − y + 2z − 1 = 0.
B. 2x + y − z = 0.
C. −x + 6y + 4z + 5 = 0.
D. 10x − 7y + 13z + 3 = 0.
Câu 81. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
a
5a
2a
8a
A. .
B.
.
C.
.
D.
.
9
9
9

9
Câu 82. Nếu khơng sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm tứ diện đều.
B. Một tứ diện đều và bốn hình chóp tam giác đều.
C. Năm hình chóp tam giác đều, khơng có tứ diện đều.
D. Bốn tứ diện đều và một hình chóp tam giác đều.
d = 120◦ .
Câu 83. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
D. 4a.
A. 2a.
B. 3a.
C.
2
Trang 6/11 Mã đề 1


Câu 84. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim
A. −∞.

B. 0.

Câu 85.
Z Các khẳng định nào sau
Z đây là sai?

C. 1.

Z

un
bằng
vn
D. +∞.

!0

f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C. B.
f (x)dx = f (x).
Z
Z
Z
Z
C.
k f (x)dx = k
f (x)dx, k là hằng số.
D.
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C.
A.

1
Câu 86. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3

một đoạn có độ dài bằng 24.
A. m = −3.

B. −3 ≤ m ≤ 4.
C. m = 4.
D. m = −3, m = 4.
1
Câu 87. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; +∞).
B. (−∞; 3).
C. (−∞; 1) và (3; +∞). D. (1; 3).
1
Câu 88. Hàm số y = x + có giá trị cực đại là
x
A. 1.
B. 2.
C. −2.
D. −1.
Câu 89. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
!x
1
1−x
Câu 90. [2] Tổng các nghiệm của phương trình 3 = 2 +

9
A. − log2 3.
B. − log3 2.
C. log2 3.

D. 1 − log2 3.
[ = 60◦ , S A ⊥ (ABCD).
Câu 91. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh S C là a. Thể tích khối√chóp S .ABCD là


a3 2
a3 3
a3 2
3
.
B. a 3.
.
D.
.
A.
C.
6
4
12
Câu 92. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Bát diện đều.
B. Nhị thập diện đều. C. Tứ diện đều.
D. Thập nhị diện đều.
Câu 93. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là

. Khi đó thể tích khối lăng trụ là
4




a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
6
36
24
12
Câu 94. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số đồng biến trên khoảng (1; 2).
B. Hàm số nghịch biến trên khoảng (−∞; 0).
C. Hàm số nghịch biến trên khoảng (0; 1).
D. Hàm số nghịch biến trên khoảng (1; +∞).
Câu 95. Hàm số nào sau đây khơng có cực trị
x−2
1

A. y =
.
B. y = x + .
C. y = x3 − 3x.
D. y = x4 − 2x + 1.
2x + 1
x
2mx + 1
1
Câu 96. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. −2.
B. 1.
C. −5.
D. 0.
Câu 97. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. .
B. 2e + 1.
C. 2e.
e

D. 3.
Trang 7/11 Mã đề 1


Câu 98. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.

B. 6 mặt.
C. 4 mặt.

D. 10 mặt.

Câu 99. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 2.
B. y(−2) = 6.
C. y(−2) = 22.
D. y(−2) = −18.
Câu 100. Khối đa diện đều loại {3; 3} có số đỉnh
A. 5.
B. 2.

C. 3.

D. 4.

π
Câu 101. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu thức T = a + b 3.


C. T = 2.
D. T = 2 3.
A. T = 4.
B. T = 3 3 + 1.

Câu 102. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; −1) và (0; +∞). B. (0; 1).
C. (−1; 0).
D. (−∞; 0) và (1; +∞).
Câu 103. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 13.
B. 0.
C. Không tồn tại.

D. 9.

Câu 104. Bát diện đều thuộc loại
A. {5; 3}.
B. {4; 3}.

D. {3; 3}.

C. {3; 4}.

Câu 105. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m > 0.
B. m < 0.
C. m = 0.

D. m , 0.

Câu 106. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦√. Thể tích khối chóp S .ABCD


√ là
3
3
3
3
8a 3
4a 3
a 3
8a 3
A.
.
B.
.
C.
.
D.
.
9
9
9
3
Câu 107. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −5.
B. x = −2.
C. x = −8.
D. x = 0.
Câu 108. Cho hình chóp S .ABCD có√đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết S H ⊥ (ABCD), S A =√a 5. Thể tích khối chóp S .ABCD là

4a3

4a3 3
2a3
2a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
!
x+1
Câu 109. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2016
2017
4035
A.
.
B.
.
C. 2017.
D.
.

2017
2018
2018
1 − xy
Câu 110. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ
x + 2y
nhất Pmin của P√ = x + y.



2 11 − 3
9 11 + 19
9 11 − 19
18 11 − 29
A. Pmin =
.
B. Pmin =
. C. Pmin =
. D. Pmin =
.
3
9
9
21
Câu 111. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 2.
B. 3.
C. Vơ số.

D. 1.
Câu 112. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 5
a3 5
a3 3
A.
.
B.
.
C.
.
D.
.
12
4
6
12
Trang 8/11 Mã đề 1


Câu 113. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
.
D. 18.
A. 27.
B. 12.

C.
2

Câu 114. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √


3
a 6
a 6
a3 2
a3 6
A.
.
B.
.
C.
.
D.
.
6
18
6
36
Câu 115. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 10 cạnh, 6 mặt.

D. 8 đỉnh, 12 cạnh, 8 mặt.
2
x − 12x + 35
Câu 116. Tính lim
x→5
25 − 5x
2
2
A. − .
B. −∞.
C. .
D. +∞.
5
5
d = 60◦ . Đường chéo
Câu 117. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vuông tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0





4a3 6
2a3 6
a3 6
3
.
B. a 6.
.
D.

.
C.
A.
3
3
3
Câu 118. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối lập phương.
C. Khối bát diện đều. D. Khối 12 mặt đều.

Câu 119. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. Vơ nghiệm.
B. 2 nghiệm.
C. 1 nghiệm.
D. 3 nghiệm.
Câu 120. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 12 năm.
C. 10 năm.
D. 14 năm.
Câu 121. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó,√các kích
√ thước của hình hộp là
C. 2, 4, 8.
D. 8, 16, 32.
A. 6, 12, 24.

B. 2 3, 4 3, 38.
Câu 122. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d song song với (P).
B. d nằm trên P hoặc d ⊥ P.
C. d ⊥ P.
D. d nằm trên P.
Câu 123. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 387 m.
B. 25 m.
C. 27 m.
D. 1587 m.
Câu 124. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
Thể tích khối chóp S .ABC√là
√ với đáy và S C = a 3.3 √

3
a 6
a 3
a3 3
2a3 6
A.
.
B.
.

C.
.
D.
.
12
4
2
9
Câu 125. Cho hình
√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối chóp S .ABCD là



a3 15
a3 6
a3 5
3
A.
.
B. a 6.
C.
.
D.
.
3
3
3
Trang 9/11 Mã đề 1



Câu 126. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 1.
B. 2.
C. 3.

D. 5.

Câu 127. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

B. aα bα = (ab)α .
C. aα+β = aα .aβ .
D. aαβ = (aα )β .
A. β = a β .
a
Câu 128. Khối chóp ngũ giác có số cạnh là
A. 9 cạnh.
B. 11 cạnh.
C. 12 cạnh.
D. 10 cạnh.
Câu 129. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của
P = xy + x + 2y + 17
A. −12.
B. −15.
C. −9.
D. −5.
Câu 130. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. 3.

C. Vô nghiệm.

D. 2.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/11 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
C

1.

C

2.

3. A

4. A

5. A

6.

B


8.

B

7.

B
D

9.
C

11.

12. A
D

13.
15.

10. A
14.

B

17.

D

16.


D

18.

D
D

19.

B

20.

21.

B

22.

23. A

24. A

25. A

26.
C

27.

29.

D

C

32.

C

34. A

35. A

36.
40. A

41. A

42.
B

C
B

44.

45. A
47.


D

38.

B

39. A
43.

C

30.

33. A
37.

C

28. A

B

31.

B

B

49.


C

46.

B

48.

B

50.

D

51. A

52.

D
B

53.

D

54. A

55.

D


56.

C

57.

D

58.

C

59.

60. A

B

61.

62.

C

63. A

64.

65. A


67. A

68.

B

69.
1

D
B
C


70.

D

71. A

72.

B

73.

74.

B


75.

B

77.

B
B

76. A
78.

D

79.

80.

D

81.

82.

B

83.

84.


B

85.
D

86.
88.

C
D
C
D

89.

C

91.

92.

D
B

100.

D

97.


D

99.

D

101. A

102.

C

103.

104.

C

105.

106. A

107.

108. A

109.

110. A


111. A

112. A

113.
B

116.

D

95. A

C

96.

C

93.

D

94.

114.

D


87.

90. A

98.

C

B
D
C
B
D

115. A
117.

B

118. A

119.

B

120. A

121. A

122.


C

B

124. A
126.
128.

B

123.

C

125.

C

127. A
D

129. A

130. A

2




Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×