Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt 5 (101)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (155.44 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. 3.
C. 2.
D. Vô nghiệm.
!
!
!
x
4
1
2
2016
Câu 2. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016


A. T = 1008.
B. T = 2016.
C. T =
.
D. T = 2017.
2017
Câu 3. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {0}.
B. D = (0; +∞).
C. D = R.
D. D = R \ {1}.
2
3
7n − 2n + 1
Câu 4. Tính lim 3
3n + 2n2 + 1
2
7
B. 0.
C. - .
D. 1.
A. .
3
3
Câu 5. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt√bên (S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√ là
3
3
3

3
a 3
4a 3
8a 3
8a 3
A.
.
B.
.
C.
.
D.
.
9
9
9
3
Câu 6. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a 3
a
a
A. a.
B.
.
C. .
D. .
2
2

3
Câu 7. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 70, 128 triệu đồng. B. 20, 128 triệu đồng. C. 50, 7 triệu đồng.
D. 3, 5 triệu đồng.
Câu 8. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 2).
B. Hàm số đồng biến trên khoảng (0; 2).
C. Hàm số đồng biến trên khoảng (0; +∞).
D. Hàm số nghịch biến trên khoảng (−∞; 2).
Câu 9. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD. Cho
hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 32π.
B. 8π.
C. V = 4π.
D. 16π.
Câu 10. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 5 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 5 mặt. C. 6 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 6 cạnh, 6 mặt.
9t
Câu 11. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. Vô số.
B. 0.
C. 1.
D. 2.
Câu 12. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 1.

B. −1.
C. 2.

D. 6.

Câu 13. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó khơng rút tiền ra?
A. 12 năm.
B. 10 năm.
C. 11 năm.
D. 14 năm.
Trang 1/10 Mã đề 1


Câu 14. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 3.
B. V = 6.
C. V = 4.
D. V = 5.
Câu 15. Khối đa diện đều loại {5; 3} có số mặt
A. 20.
B. 30.

C. 8.

D. 12.


Câu 16. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 5
a3 5
a3 3
.
B.
.
C.
.
D.
.
A.
12
6
4
12
2n2 − 1
Câu 17. Tính lim 6
3n + n4
2
A. 0.
B. 2.
C. 1.
D. .
3
x−3 x−2
x−3

x−2
Câu 18. [3-12212d] Số nghiệm của phương trình 2 .3 − 2.2 − 3.3 + 6 = 0 là
A. 1.
B. 3.
C. Vô nghiệm.
D. 2.
Câu 19. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 4.
B. 0, 3.
C. 0, 2.
D. 0, 5.
Câu 20. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (II) sai.
5
Câu 21. Tính lim
n+3
A. 3.

B. Câu (III) sai.

C. Khơng có câu nào D. Câu (I) sai.
sai.

B. 2.


C. 0.

D. 1.

Câu 22. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Bốn tứ diện đều và một hình chóp tam giác đều.
B. Năm tứ diện đều.
C. Năm hình chóp tam giác đều, khơng có tứ diện đều.
D. Một tứ diện đều và bốn hình chóp tam giác đều.
Câu 23. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối lập phương.
B. Khối 12 mặt đều.

C. Khối tứ diện đều.

D. Khối bát diện đều.

Câu 24. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
Thể tích khối chóp S .ABC √là
vng góc

√ với đáy và S C = a 3.3 √
a3 3
a 3
2a3 6
a3 6
A.
.

B.
.
C.
.
D.
.
2
4
9
12
Câu 25. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB)
√ bằng



a 6
A.
.
B. 2a 6.
C. a 6.
D. a 3.
2
Trang 2/10 Mã đề 1


Câu 26.√Thể tích của tứ diện đều √
cạnh bằng a
3
3

a 2
a 2
.
B.
.
A.
2
6


a3 2
C.
.
4


a3 2
D.
.
12

Câu 27. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là√
3
3
a
2a 3
4a3 3
a3

A.
.
B.
.
C.
.
D.
.
3
3
3
6
Câu 28. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
z
x+1 y−5
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (3; 4; −4).
B. ~u = (1; 0; 2).
C. ~u = (2; 1; 6).
D. ~u = (2; 2; −1).
Câu 29. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α


D. aα+β = aα .aβ .
A. aαβ = (aα )β .
B. aα bα = (ab)α .
C. β = a β .
a
1
Câu 30. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = e + 1.
B. xy = −e − 1.
C. xy0 = −ey + 1.
D. xy0 = ey − 1.
Câu 31. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
A. .
B. 1.
C. .
D. 3.
2
2
Z 1
Câu 32. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b

0

1
1
.
C. 1.
D. .
4
2
Câu 33. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim− f (x) = f (b).
B. lim− f (x) = f (a) và lim+ f (x) = f (b).
A. 0.

B.

x→a

x→b

x→a

x→b

C. lim+ f (x) = f (a) và lim+ f (x) = f (b).

x→a

x→b


x→a

x→b

D. lim− f (x) = f (a) và lim− f (x) = f (b).

Câu 34. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là

3
3
10a
.
A. 20a3 .
B. 40a3 .
C. 10a3 .
D.
3
 π
x
Câu 35. [2-c] Giá trị lớn nhất của hàm số y = e cos x trên đoạn 0; là
2


3 π6
1 π3
2 π4
A. 1.
B.

e .
C. e .
D.
e .
2
2
2
Câu 36. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là

3
3

a 6
a 5
a3 15
A.
.
B.
.
C.
.
D. a3 6.
3
3
3
Câu 37. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0

1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
9
18
15
6
Trang 3/10 Mã đề 1


Câu 38. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
A. lim [ f (x) + g(x)] = a + b.
B. lim [ f (x)g(x)] = ab.
x→+∞
x→+∞
f (x) a
= .
C. lim [ f (x) − g(x)] = a − b.
D. lim
x→+∞
x→+∞ g(x)
b
Câu 39. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực

x≥1
A. m < 3.
B. m > 3.
C. m ≥ 3.
D. m ≤ 3.
Câu 40. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
2n + 1
Câu 41. Tính giới hạn lim
3n + 2
1
2
3
A. .
B. 0.
C. .
D. .
2
3
2
Câu 42. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 22 triệu đồng.
B. 3, 03 triệu đồng.

C. 2, 20 triệu đồng.
D. 2, 25 triệu đồng.
Câu 43. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m < 3.
B. m > 3.
C. m ≤ 3.
D. m ≥ 3.
Z 1
6
2
3
. Tính
f (x)dx.
Câu 44. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
0
3x + 1
A. 4.

B. 2.

C. −1.

Câu 45. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lăng trụ.
B. Hình tam giác.
C. Hình chóp.


4n2 + 1 − n + 2

bằng
Câu 46. Tính lim
2n − 3
A. +∞.
B. 1.
C. 2.

D. 6.
D. Hình lập phương.

3
.
2
Câu 47. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
A. .
B. 9.
C. 6.
D. .
2
2
Câu 48. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = 3S h.
B. V = S h.
C. V = S h.
D. V = S h.

3
2
4x + 1
Câu 49. [1] Tính lim
bằng?
x→−∞ x + 1
A. −4.
B. 4.
C. −1.
D. 2.
Câu 50. Khối đa diện đều loại {3; 4} có số cạnh
A. 8.
B. 10.

C. 12.

Câu 51. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 8 mặt.
C. 6 mặt.

D.

D. 6.
D. 7 mặt.
Trang 4/10 Mã đề 1







Câu 52. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
3
3
9
A. m ≥ 0.
B. 0 ≤ m ≤ .
C. 0 < m ≤ .
D. 0 ≤ m ≤ .
4
4
4
Câu 53. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
8a
a
5a
2a
.
B.
.
C. .
D.
.
A.
9
9
9

9
Câu 54. Khối đa diện đều loại {4; 3} có số đỉnh
A. 8.
B. 6.
C. 10.
D. 4.
[ = 60◦ , S A ⊥ (ABCD).
Câu 55. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh
√chóp S .ABCD là
√ S C là a. Thể tích khối
3
3
3

a 2
a 3
a 2
A.
.
B.
.
C.
.
D. a3 3.
12
6
4
Câu 56. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 2020.

B. 2020.
C. log2 13.
D. 13.
2

2

Câu 57. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −7.
B. Không tồn tại.
C. −3.

D. −5.

Câu 58. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (I) đúng.

B. Chỉ có (II) đúng.
C. Cả hai câu trên đúng. D. Cả hai câu trên sai.
d = 90◦ , ABC

d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 59. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là



a3 2
a3 3
a3 3
.
B.
.
C.
.
D. 2a2 2.
A.
12
24
24
1
Câu 60. [1] Giá trị của biểu thức log √3
bằng
10
1
1
A. 3.
B. −3.
C. − .
D. .
3

3
Z 2
ln(x + 1)
Câu 61. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. 1.
B. −3.
C. 0.
D. 3.
Câu 62. Khối đa diện đều loại {3; 5} có số mặt
A. 30.
B. 20.

C. 12.

D. 8.

Câu 63. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng khơng đổi trong thời gian ơng A hồn nợ.
100.(1, 01)3
(1, 01)3
A. m =
triệu.
B. m =
triệu.

3
(1, 01)3 − 1
120.(1, 12)3
100.1, 03
C. m =
triệu.
D. m =
triệu.
3
(1, 12) − 1
3
Trang 5/10 Mã đề 1


x−2 x−1
x
x+1
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [−3; +∞).
B. (−3; +∞).
C. (−∞; −3].
D. (−∞; −3).

Câu 64. [4-1212d] Cho hai hàm số y =

Câu 65. Dãy số nào sau đây có giới hạn là 0?
n2 + n + 1
n2 − 3n
.
B.
u
=
.
A. un =
n
n2
(n + 1)2

C. un =

n2 − 2
.
5n − 3n2

2
Câu 66. Tính
√ mơ đun của số phức z biết (1 + 2i)z = 3 + 4i. √
A. |z| = 2 5.
B. |z| = 5.
C. |z| = 5.

D. un =


1 − 2n
.
5n + n2

D. |z| =

√4
5.

Câu 67. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số mặt của khối chóp.
B. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
C. Số cạnh của khối chóp bằng số mặt của khối chóp.
D. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
1
a
, với a, b ∈ Z. Giá trị của a + b là
Câu 68. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
4 b ln 3
A. 1.
B. 4.
C. 2.
D. 7.
n−1
Câu 69. Tính lim 2
n +2
A. 1.
B. 2.
C. 0.
D. 3.


Câu 70. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng



3a 38
a 38
3a 58
3a
.
B.
.
C.
.
D.
.
A.
29
29
29
29
Câu 71. Hàm số f có nguyên hàm trên K nếu
A. f (x) liên tục trên K.
B. f (x) có giá trị lớn nhất trên K.
C. f (x) xác định trên K.
D. f (x) có giá trị nhỏ nhất trên K.
1
Câu 72. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 luôn đồng biến trên

3

một đoạn có độ dài bằng 24.
A. m = 4.
B. −3 ≤ m ≤ 4.
C. m = −3, m = 4.
D. m = −3.
√3
Câu 73. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga a bằng
1
1
A. .
B. −3.
C. − .
D. 3.
3
3
Câu 74. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 24.
B. 3, 55.
C. 15, 36.
D. 20.
d = 120◦ .
Câu 75. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 3a.
B.

.
C. 2a.
D. 4a.
2
Câu 76. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy một góc 60◦ . Thể tích khối
√ chóp S .ABCD là 3 √

3

2a 3
a 3
a3 3
3
A. a 3.
B.
.
C.
.
D.
.
3
6
3
Trang 6/10 Mã đề 1


Câu 77. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27

.
B. 18.
C. 27.
D. 12.
A.
2
Câu 78. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (0; 2).
B. (−∞; 1).
C. R.

D. (2; +∞).

Câu 79. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp đôi.
B. Tăng gấp 4 lần.
C. Tăng gấp 8 lần.
D. Tăng gấp 6 lần.
Câu 80. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối tứ diện đều.

C. Khối bát diện đều.

D. Khối lập phương.

Câu 81.
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh
Z đề nàoZsai?

A.
Z
C.

( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Z
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.

f (x)g(x)dx =

B.
Z
D.

f (x)dx g(x)dx.
Z
Z
( f (x) + g(x))dx =
f (x)dx + g(x)dx.


Câu 82. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vơ số.
B. 63.
C. 64.
D. 62.
Câu 83. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng

(−∞; +∞).
A. [1; +∞).
B. (−∞; −3].
C. [−3; 1].
D. [−1; 3].
x+1
bằng
Câu 84. Tính lim
x→−∞ 6x − 2
1
1
1
A. .
B. 1.
C. .
D. .
2
3
6
Câu 85. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất của hàm số. Khi đó tổng
√M + m


C. 8 3.
D. 7 3.
A. 16.
B. 8 2.
Câu 86. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.

(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 0.

B. 2.

C. 3.

Câu 87. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 5 mặt.
C. 4 mặt.

D. 1.
D. 6 mặt.

Câu 88. Mệnh đề nào sau đây sai?
A. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
!0
Z
B.
f (x)dx = f (x).
Z
C. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
f (x)dx = F(x) + C.
D. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Trang 7/10 Mã đề 1


Câu 89. Phát biểu nào trong các phát biểu sau là đúng?

A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
Câu 90. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 + ln x.
B. y0 = 1 − ln x.

C. y0 = x + ln x.
D. y0 = ln x − 1.

Câu 91. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 2 nghiệm.
B. 1 nghiệm.
C. Vô nghiệm.
D. 3 nghiệm.
1
2mx + 1
trên đoạn [2; 3] là − khi m nhận giá trị bằng
Câu 92. Giá trị lớn nhất của hàm số y =
m−x
3
A. −2.
B. 1.
C. 0.
D. −5.
x+3
nghịch biến trên khoảng
Câu 93. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x−m

(0; +∞)?
A. 3.
B. 1.
C. Vô số.
D. 2.
Câu 94. Khối đa diện đều loại {3; 4} có số đỉnh
A. 10.
B. 4.

C. 6.

Câu 95. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối tứ diện đều.

C. Khối 12 mặt đều.

D. 8.

D. Khối bát diện đều.
 π π
3
Câu 96. Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. −1.
B. 3.
C. 1.
D. 7.
Câu 97. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 2 nghiệm.

B. 3 nghiệm.
C. 1 nghiệm.

D. Vô nghiệm.

Câu 98. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; 8).
B. A(4; −8).
C. A(−4; −8)(.
D. A(4; 8).
Câu 99. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt phẳng vng góc với (ABCD).
Thể tích khối chóp

√ S .ABCD là
3
3
3

a 3
a 3
a 2
.
B. a3 3.
C.
.
D.
.
A.
2

4
2
Câu 100. Tứ diện đều thuộc loại
A. {3; 3}.
B. {3; 4}.
C. {5; 3}.
D. {4; 3}.
[ = 60◦ , S O
Câu 101. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.√Khoảng cách từ O đến (S
√ BC) bằng

a 57
2a 57
a 57
A.
.
B.
.
C.
.
D. a 57.
17
19
19
3
2
Câu 102. Điểm cực đại của đồ thị hàm số y = 2x − 3x − 2 là
A. (0; −2).

B. (2; 2).
C. (−1; −7).
D. (1; −3).
Câu 103. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba cạnh.
B. Bốn cạnh.
C. Năm cạnh.
Câu 104. [1] Giá trị của biểu thức 9log3 12 bằng
A. 144.
B. 24.
C. 2.
log 2x
Câu 105. [1229d] Đạo hàm của hàm số y =

x2
1 − 2 log 2x
1
1 − 2 ln 2x
A. y0 =
.
B. y0 = 3
.
C. y0 = 3
.
3
x
2x ln 10
x ln 10

D. Hai cạnh.

D. 4.

D. y0 =

1 − 4 ln 2x
.
2x3 ln 10
Trang 8/10 Mã đề 1


1 + 2 + ··· + n
Câu 106. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
A. lim un = 1.
B. lim un = 0.
1
C. lim un = .
D. Dãy số un khơng có giới hạn khi n → +∞.
2
Câu 107. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
A. 5.
B.
D. 34.

.
C. 68.
17
Câu 108. Khối đa diện đều loại {4; 3} có số mặt
A. 6.
B. 8.
C. 10.
D. 12.
Câu 109. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
1
ab
ab
.
C. √
.
D. √
.
.
B. √
A. 2
2
a +b
a2 + b2
2 a2 + b2
a2 + b2
Câu 110. [12214d] Với giá trị nào của m thì phương trình
A. 2 ≤ m ≤ 3.


B. 2 < m ≤ 3.

Câu 111. Dãy số nào có giới hạn bằng!0?
n
6
n3 − 3n
.
B. un =
.
A. un =
n+1
5

1
3|x−2|

= m − 2 có nghiệm

C. 0 < m ≤ 1.

D. 0 ≤ m ≤ 1.

C. un = n − 4n.

!n
−2
D. un =
.
3


2

Câu 112. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa
√ hai đường thẳng BD và√S C bằng


a 6
a 6
a 6
A.
.
B.
.
C. a 6.
.
D.
6
2
3
!
x+1
Câu 113. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2016
2017
4035
A.
.

B.
.
C.
.
D. 2017.
2017
2018
2018
0 0 0 0
Câu 114.
a. Khoảng cách từ C đến √
AC 0 bằng
√ ABCD.A B C D cạnh √
√ [2] Cho hình lâp phương
a 3
a 6
a 6
a 6
A.
.
B.
.
C.
.
D.
.
2
3
2
7

3

Câu 115. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e3 .
B. e5 .
C. e2 .
D. e.
Câu 116.
√ Thể tích của khối lăng
√ trụ tam giác đều có cạnh√bằng 1 là:
3
3
3
A.
.
B.
.
C.
.
2
12
4
Câu 117. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 + 2e
1 + 2e
1 − 2e
A. m =
.
B. m =
.

C. m =
.
4e + 2
4 − 2e
4e + 2
x2 − 9
Câu 118. Tính lim
x→3 x − 3
A. 3.
B. −3.
C. +∞.

D.

3
.
4

D. m =

1 − 2e
.
4 − 2e

D. 6.
x+2
Câu 119. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?

A. Vô số.
B. 1.
C. 2.
D. 3.
Trang 9/10 Mã đề 1


Câu 120. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi
M, N và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng




20 3
14 3
A. 6 3.
B. 8 3.
C.
.
D.
.
3
3

Câu 121. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị nhỏ nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới
" đây?
!
5

5
C.
;3 .
D. [3; 4).
A. (1; 2).
B. 2; .
2
2
Câu 122. [1] Tập
! xác định của hàm số y! = log3 (2x + 1) là
!
1
1
1
B. − ; +∞ .
C.
; +∞ .
A. −∞; − .
2
2
2

!
1
D. −∞; .
2

x2 − 12x + 35
Câu 123. Tính lim
x→5

25 − 5x
2
2
B. −∞.
C. +∞.
D. − .
A. .
5
5
Câu 124. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 1587 m.
B. 27 m.
C. 25 m.
D. 387 m.
Câu 125.
√ min |z − 1 − i|.
√ [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm
B. 2.
C. 1.
D. 2.
A. 10.
Câu 126. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (1; +∞).
!
1
C. Hàm số nghịch biến trên khoảng −∞; .

3

!
1
B. Hàm số đồng biến trên khoảng ; 1 .
3
!
1
D. Hàm số nghịch biến trên khoảng ; 1 .
3

Câu 127. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n3 lần.
B. 3n3 lần.
C. n lần.
D. n2 lần.
Câu 128. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1637
1728
23
1079
.
B.
.
C.
.
D.
.
A.

4913
4913
68
4913
Câu 129. [1] Đạo hàm của hàm số y = 2 x là
1
1
A. y0 = 2 x . ln x.
B. y0 =
.
C. y0 = x
.
D. y0 = 2 x . ln 2.
ln 2
2 . ln x
Câu 130. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. (1; 2).
B. [−1; 2).
C. (−∞; +∞).
D. [1; 2].
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.


C

2. A

3.

C

4.

5.

C

6. A

7.

B

8.

10.

B

11.

12.


D

14.

B
D

13.

C

15.

C

16.

D

17. A

18.

D

19.

C

20.


C

D
B
C

21.

22.

D

23.

24.

D

25.

C

26.

D

27.

C


29.

C
C

28.

B

30.

D

31.

32.

D

33. A

D

34. A

35.

D


36. A

38.

D
D

39.

C

40.

41.

C

42. A

43.
45.

D

44. A

B

47. A
49.


B

B

48.

B

50.

51. A
53.

46.

52.
B

55.

C
B

54. A
C

56.

C


57.

B

58.

C

59.

B

60.

C

61.

B

62.

63.

B

64.

65.


D

67. A
69.

C
1

B
C

66.

D

68.

D

70.

D


71. A

72.

C


73. A

74.

C

75.

B

76.

77.

B

78. A

79.
81.

C
B

83.

C

85. A

89.

80.

D

82.

D

84.

D

86.
C

87.

D

B

88. A
90. A

B

91. A


92.

C

93. A

94.

C

95. A

96.

C

97. A

98.
D

99.

100. A

C

101.

D


102. A

103. A

104. A

105.

106.

C

107.

B

108. A

109.

B

110.

111.

D

C

B

112. A

113.

B

114.

115.

B

116.

B
C

118.

117. A

D

119.

C

120. A


121.

C

122.

B

124.

B

123. A
125.

126.

C

127. A
129.

D

128. A
D

130.


2

C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×