Tải bản đầy đủ (.pdf) (13 trang)

Đề ôn toán thpt 5 (310)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (157.01 KB, 13 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Hàm số nào sau đây khơng có cực trị
1
x−2
.
B. y = x + .
A. y =
2x + 1
x

C. y = x4 − 2x + 1.

D. y = x3 − 3x.

Câu 2. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là


3
3
a 3
a 2


a3 3
a3 6
A.
.
B.
.
C.
.
D.
.
24
16
48
48
Câu 3. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 12.
B. 3.
C. 27.

D. 10.

Câu 4. Cho z là nghiệm của phương trình √x2 + x + 1 = 0. Tính P = z4 + 2z3 − z

−1 − i 3
−1 + i 3
A. P = 2.
B. P =
.
C. P = 2i.
D. P =

.
2
2
Câu 5. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
.
B. log2 a = loga 2.
C. log2 a =
.
D. log2 a = − loga 2.
A. log2 a =
log2 a
loga 2
12 + 22 + · · · + n2
Câu 6. [3-1133d] Tính lim
n3
1
B. +∞.
A. .
3

C.

2
.
3

D. 0.
 π π

Câu 7. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. −1.
B. 3.
C. 7.
D. 1.
Câu 8. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
C. .
D. .
A. 4.
B. .
8
4
2
Câu 9. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên sai.


B. Chỉ có (II) đúng.

C. Cả hai câu trên đúng. D. Chỉ có (I) đúng.

Câu 10.
đề nào sau đây sai?
Z [1233d-2] Mệnh
Z
A.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z
B.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
Z
C.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
D.
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Trang 1/10 Mã đề 1


Câu 11. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?

α

α α
α
A. a b = (ab) .
B. β = a β .
C. aαβ = (aα )β .
D. aα+β = aα .aβ .
a
Câu 12. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ông muốn hoàn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ơng A hồn nợ.
(1, 01)3
120.(1, 12)3
triệu.
B.
m
=
triệu.
A. m =
(1, 12)3 − 1
(1, 01)3 − 1
100.1, 03
100.(1, 01)3
C. m =
triệu.
D. m =
triệu.

3
3
Câu 13. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (III).

B. (II) và (III).

C. Cả ba mệnh đề.

D. (I) và (II).

Câu 14. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x+1 y−4 z−4
x−2 y−3 z+4
=
=
và d0 :
=
=
đường thẳng d :
2
3
−5
3
−2

−1
x−2 y−2 z−3
x y z−1
A.
=
=
.
B. = =
.
2
3
4
1 1
1
x−2 y+2 z−3
x y−2 z−3
=
.
D.
=
=
.
C. =
2
3
−1
2
2
2
2


Câu 15. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 2 − log2 3.
B. 3 − log2 3.
C. 1 − log2 3.
Câu 16. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
A. f 0 (0) =
.
B. f 0 (0) = ln 10.
C. f 0 (0) = 10.
ln 10
Câu 17. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Một mặt.
B. Hai mặt.
C. Ba mặt.

D. 1 − log3 2.
D. f 0 (0) = 1.
D. Bốn mặt.

Câu 18. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 2.

B. 4.


C. 1.

D. 3.

Câu 19. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. 63.
C. 64.
D. Vô số.
Trang 2/10 Mã đề 1


Câu 20. Khối đa diện đều loại {3; 5} có số đỉnh
A. 20.
B. 30.

C. 8.

D. 12.

d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 21. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là



a3 3
a3 2

a3 3
2
.
B.
.
C. 2a 2.
.
A.
D.
24
12
24
Câu 22. Dãy số nào sau đây có giới hạn khác 0?
1
sin n
A.
.
B. .
n
n

1
C. √ .
n

Câu 23. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
A. − .
B. −e.

C. − 2 .
2e
e
2n − 3
Câu 24. Tính lim 2
bằng
2n + 3n + 1
A. 0.
B. −∞.
C. +∞.
x−2
Câu 25. Tính lim
x→+∞ x + 3
2
A. 2.
B. − .
C. −3.
3

D.

n+1
.
n

1
D. − .
e

D. 1.


D. 1.

Câu 26. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 8 năm.
B. 10 năm.
C. 7 năm.
D. 9 năm.
Câu 27. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính quãng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 12 m.
B. 24 m.
C. 8 m.
D. 16 m.
!
x+1
Câu 28. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
4035
2017
2016
A.
.
B.
.
C.
.

D. 2017.
2017
2018
2018

x2 + 3x + 5
Câu 29. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. 1.
B. .
C. 0.
D. − .
4
4
Câu 30. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −2.
B. 2.
C. −4.

D. 4.

Câu 31. Cho số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.

A. |z| = 10.
B. |z| = 17.
C. |z| = 10.
D. |z| = 17.

Câu 32. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 12 năm.
B. 13 năm.
C. 11 năm.
D. 10 năm.
x−3
Câu 33. [1] Tính lim
bằng?
x→3 x + 3
A. 1.
B. 0.
C. +∞.
D. −∞.
Trang 3/10 Mã đề 1



Câu 34. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là √


a3 3
a3 3
a3
.
B.
.

C.
.
D. a3 3.
A.
4
12
3
Câu 35. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 8 lần.
B. Tăng gấp 6 lần.
C. Tăng gấp 4 lần.
D. Tăng gấp đôi.
un
Câu 36. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. 0.
B. −∞.
C. +∞.
D. 1.
d = 60◦ . Đường chéo
Câu 37. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vuông tại A, AC = a, ACB
0
0 0
0 0

BC của mặt bên (BCC B ) tạo với mặt phẳng (AA C C) một góc 30 . Thể tích của khối lăng trụ ABC.A0 B0C 0






a3 6
4a3 6
2a3 6
3
A.
.
B.
.
C. a 6.
D.
.
3
3
3
Câu 38. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 1; 6).
B. ~u = (1; 0; 2).
C. ~u = (3; 4; −4).

D. ~u = (2; 2; −1).
√3
Câu 39. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga a bằng
1
1
A. .
B. − .
C. 3.
D. −3.
3
3
Câu 40. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 9 mặt.
C. 6 mặt.
D. 3 mặt.
Câu 41. Khối đa diện đều loại {3; 3} có số đỉnh
A. 5.
B. 2.

C. 4.

D. 3.

Câu 42. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Một tứ diện đều và bốn hình chóp tam giác đều.
B. Năm hình chóp tam giác đều, khơng có tứ diện đều.
C. Năm tứ diện đều.
D. Bốn tứ diện đều và một hình chóp tam giác đều.

Câu 43. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a
A. lim [ f (x) − g(x)] = a − b.
B. lim
= .
x→+∞
x→+∞ g(x)
b
C. lim [ f (x)g(x)] = ab.
D. lim [ f (x) + g(x)] = a + b.
x→+∞
x→+∞

Câu 44. [1] Biết log6 a = 2 thì log6 a bằng
A. 36.
B. 4.
C. 108.
D. 6.
Câu 45. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối tứ diện đều.

C. Khối bát diện đều.

D. Khối lập phương.

Câu 46. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt

và mặt phẳng
(S AB). Thiết diện của
phẳng (AIC) có diện√tích là

√ hình chóp S .ABCD với mặt
2
2
2
a 2
a 5
11a
a2 7
A.
.
B.
.
C.
.
D.
.
4
16
32
8
Trang 4/10 Mã đề 1


Câu 47. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 8 mặt.

C. 9 mặt.
1 − n2
bằng?
Câu 48. [1] Tính lim 2
2n + 1
1
1
A. .
B. − .
2
2

C. 0.

Câu 49. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 2.

B. 1.

D. 7 mặt.

D.
1
3|x−1|

1
.
3


= 3m − 2 có nghiệm duy

C. 3.

D. 4.

Câu 50. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √


3
a 2
a 6
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
6
6
36
18
1

. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 51. [3-12217d] Cho hàm số y = ln
x+1
0
y
0
y
A. xy = e + 1.
B. xy = −e + 1.
C. xy0 = −ey − 1.
D. xy0 = ey − 1.
log(mx)
Câu 52. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m ≤ 0.
B. m < 0.
C. m < 0 ∨ m > 4.
D. m < 0 ∨ m = 4.
Câu 53. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. −7, 2.
B. 72.
C. 0, 8.

D. 7, 2.
!
3n + 2
2
+ a − 4a = 0. Tổng các phần tử
Câu 54. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim

n+2
của S bằng
A. 2.
B. 3.
C. 4.
D. 5.
Câu 55. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
3
9
D. .
A. 1.
B. 3.
C. .
2
2
Câu 56. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 12 mặt đều.
C. Khối lập phương.
D. Khối tứ diện đều.
Câu 57. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.016.000.
B. 102.424.000.
C. 102.016.000.
D. 102.423.000.
log7 16
bằng

Câu 58. [1-c] Giá trị của biểu thức
log7 15 − log7 15
30
A. −2.
B. 4.
C. 2.
D. −4.
Câu 59. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
B. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
!
un
C. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
!
un
D. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
Trang 5/10 Mã đề 1


x+1
Câu 60. Tính lim
bằng

x→−∞ 6x − 2
1
1
1
A. .
B. .
C. .
6
2
3
Câu 61. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; +∞).
B. (−∞; 6, 5).
C. (4; 6, 5].

D. 1.
D. [6, 5; +∞).

Câu 62. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A
hợp với đáy
một góc 60◦ . Thể tích khối chóp S .ABCD là √


2a3 3
a3 3
A.
.
B. a3 3.
.
C.

3
6
7n2 − 2n3 + 1
Câu 63. Tính lim 3
3n + 2n2 + 1
2
B. 0.
C. 1.
A. - .
3
5
Câu 64. Tính lim
n+3
A. 3.
B. 1.
C. 2.
−2x2

Câu 65. [2-c] Giá trị lớn nhất của hàm số y = xe
1
1
A. √ .
B. 2 .
e
2 e

trên đoạn [1; 2] là
2
C. 3 .
e


⊥ (ABCD). Mặt bên (S CD)

a3 3
D.
.
3

D.

7
.
3

D. 0.
D.

1
.
2e3

ln2 x
m
Câu 66. [3] Biết rằng giá trị lớn nhất của hàm số y =
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 22.
B. S = 32.

C. S = 24.
D. S = 135.


Câu 67. Tìm giá trị lớn nhất của√hàm số y = x + 3 + 6 −√x

C. 2 + 3.
D. 2 3.
A. 3.
B. 3 2.
Câu 68. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có hai.
B. Khơng có.
C. Có một hoặc hai.
D. Có một.
Câu 69. Khối đa diện đều loại {5; 3} có số đỉnh
A. 12.
B. 8.

C. 30.

D. 20.

Câu 70. [2]√Tìm m để giá trị lớn nhất√của hàm số y = 2x + (m + 1)2 trên [0; 1] bằng 8
B. m = ± 2.
C. m = ±3.
D. m = ±1.
A. m = ± 3.
3


Câu 71. Khối đa diện đều loại {3; 4} có số cạnh
A. 12.
B. 6.

C. 8.

2

x

D. 10.

d = 300 .
Câu 72. Cho khối lăng trụ đứng ABC.A B C có đáy ABC là tam giác vng tại A. BC = 2a, ABC
Độ dài cạnh bên
CC 0 = 3a. Thể tích V của khối lăng trụ đã cho. √


a3 3
3a3 3
A. V =
.
B. V = 3a3 3.
C. V =
.
D. V = 6a3 .
2
2
1

Câu 73. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2] ∪ [−1; +∞). B. −2 ≤ m ≤ −1.
C. (−∞; −2) ∪ (−1; +∞). D. −2 < m < −1.
0

0

0

Câu 74. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh
! đề nào dưới đây đúng?
!
1
1
A. Hàm số nghịch biến trên khoảng −∞; .
B. Hàm số đồng biến trên khoảng ; 1 .
3
!3
1
C. Hàm số nghịch biến trên khoảng ; 1 .
D. Hàm số nghịch biến trên khoảng (1; +∞).
3
Trang 6/10 Mã đề 1


1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1

0
y
B. xy = e + 1.
C. xy0 = −ey + 1.
D. xy0 = −ey − 1.

Câu 75. [3-12217d] Cho hàm số y = ln
A. xy0 = ey − 1.

Câu 76. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 5 mặt.
C. 6 mặt.

D. 4 mặt.

Câu 77. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.


4n2 + 1 − n + 2
Câu 78. Tính lim
bằng
2n − 3
3
A. 1.
B. +∞.

C. .
D. 2.
2
Câu 79. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≥ .
B. m ≤ .
C. m > .
D. m < .
4
4
4
4



x=t




Câu 80. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)





z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
B. (x − 3)2 + (y − 1)2 + (z − 3)2 = .
A. (x + 3)2 + (y + 1)2 + (z − 3)2 = .
4
4
9
9
C. (x + 3)2 + (y + 1)2 + (z + 3)2 = .
D. (x − 3)2 + (y + 1)2 + (z + 3)2 = .
4
4
Câu 81. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 72cm3 .
B. 64cm3 .
C. 27cm3 .
D. 46cm3 .
Câu 82. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

1
A. 5.
B. .
C. 5.
5



Câu 83. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 3ac
3b + 2ac
.
B.
.
C.
.
A.
c+1
c+2
c+2

D. 25.

D.

3b + 2ac
.
c+3

Câu 84. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 0.
B. m ≥ 0.
C. m > −1.
D. m > 1.
p
ln x
1

Câu 85. Gọi F(x) là một nguyên hàm của hàm y =
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
1
8
8
1
B. .
C. .
D. .
A. .
9
3
9
3
2

Câu 86. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 5.
B. 6.
C. 8.

D. 7.

Câu 87. Biểu thức nào sau đây √
khơng có nghĩa
−3
−1
A. (−1) .

B.
−1.

D. 0−1 .


C. (− 2)0 .

Câu 88. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 5 mặt. B. 6 đỉnh, 6 cạnh, 6 mặt. C. 5 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 6 mặt.
Trang 7/10 Mã đề 1





x = 1 + 3t




Câu 89. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua




z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương

 trình là











x
=
1
+
7t
x
=
−1
+
2t
x
=
−1
+
2t
x = 1 + 3t

















A. 
.
B. 
y=1+t
y = −10 + 11t . C. 
y = −10 + 11t . D. 
y = 1 + 4t .

















z = 1 + 5t
z = −6 − 5t
z = 6 − 5t
z = 1 − 5t
Câu 90. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {1}.
B. D = (0; +∞).

C. D = R \ {0}.

D. D = R.

Câu 91. [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
ab
1
1
.
B. 2
.
C. √
.

D. √
.
A. √
2
a +b
2 a2 + b2
a2 + b2
a2 + b2
!
1
1
1
Câu 92. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3
5
A. 2.
B. +∞.
C. .
D. .
2
2
x
x
x
Câu 93. [3-12211d] Số nghiệm của phương trình 12.3 + 3.15 − 5 = 20 là
A. Vơ nghiệm.
B. 1.

C. 3.
D. 2.
1
Câu 94. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (−∞; 1) và (3; +∞). B. (1; 3).
C. (−∞; 3).
D. (1; +∞).
0

0

0

0

Câu 95. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = S h.
B. V = S h.
C. V = S h.
D. V = 3S h.
3
2
Câu 96. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
D. .
A. −2.

B. 2.
C. − .
2
2
Câu 97. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 5
a3 3
a3 5
.
B.
.
C.
.
D.
.
A.
6
4
12
12
Câu 98. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (1; 3; 2).
B. (2; 4; 4).
C. (2; 4; 6).
D. (2; 4; 3).
1 − 2n

Câu 99. [1] Tính lim
bằng?
3n + 1
2
1
2
A. .
B. 1.
C. .
D. − .
3
3
3
q
2
Câu 100. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [−1; 0].
B. m ∈ [0; 4].
C. m ∈ [0; 2].
D. m ∈ [0; 1].
Câu 101. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 84cm3 .
B. 48cm3 .
C. 64cm3 .
D. 91cm3 .
Trang 8/10 Mã đề 1



Câu 102. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 3.
B. .
C. 2e.
e
Câu 103. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.
C. Khối 20 mặt đều.
x2 +2x

Câu 104. [2] Tổng các nghiệm của phương trình 2
=8
A. 6.
B. −5.
C. −6.
Câu 105. Dãy số nào sau đây có giới hạn là 0?
n2 + n + 1
n2 − 2
A. un =
.
B.
u
=
.
n
(n + 1)2

5n − 3n2

2−x

C. un =

D. 2e + 1.
D. Khối bát diện đều.


D. 5.

1 − 2n
.
5n + n2

D. un =

n2 − 3n
.
n2

Câu 106. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. Không tồn tại.
B. 0.
C. 13.

D. 9.

Câu 107. [1] Tập xác định của hàm số y = 4 x +x−2 là

A. D = [2; 1].
B. D = R.
C. D = R \ {1; 2}.

D. D = (−2; 1).

Câu 108. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vô nghiệm.
B. 1.
C. 2.

D. 3.

2

Câu 109. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 1.
B. 3.
C. Vô số.
D. 2.
Câu 110. Phát biểu nào sau đây là sai?
A. lim un = c (un = c là hằng số).
B. lim qn = 0 (|q| > 1).
1
1
C. lim = 0.
D. lim k = 0.
n
n

Câu 111. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
.
B. a3 .
C.
.
D.
.
A.
12
6
24
q
2
Câu 112. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x + log23 x + 1 + 4m −
√ i
h
1 = 0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 1].
B. m ∈ [0; 4].
C. m ∈ [−1; 0].
D. m ∈ [0; 2].
Câu 113. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng góc với đáy, S C = a √3. Thể tích khối chóp S .ABCD là


a3
a3 3
a3 3
3
A.
.
B.
.
C. a .
D.
.
3
3
9

Câu 114. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 2 nghiệm.
B. 1 nghiệm.
C. Vô nghiệm.
D. 3 nghiệm.
Câu 115. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 4.
B. 6.
C. 3.
D. 8.
Câu 116. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim− f (x) = f (b).
B. lim− f (x) = f (a) và lim− f (x) = f (b).

x→a

x→b

x→a

x→b

C. lim+ f (x) = f (a) và lim+ f (x) = f (b).

x→a

x→b

x→a

x→b

D. lim− f (x) = f (a) và lim+ f (x) = f (b).

Trang 9/10 Mã đề 1


Câu 117. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD

√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng



a 2
a 2
.
B. 2a 2.
.
C. a 2.
D.
A.
2
4
d = 120◦ .
Câu 118. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 3a.
B.
.
C. 4a.
D. 2a.
2
Câu 119. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 3}.
B. {4; 3}.
C. {5; 3}.

D. {3; 4}.

Câu 120. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 2; m = 1.
B. M = e−2 − 2; m = 1.

C. M = e−2 + 1; m = 1.
D. M = e2 − 2; m = e−2 + 2.
Câu 121. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
Câu 122. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng
(cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 15 tháng.
B. 16 tháng.
C. 17 tháng.
D. 18 tháng.
Câu 123. [12215d] Tìm m để phương trình 4 x+
9
3
A. 0 ≤ m ≤ .
B. 0 ≤ m ≤ .
4
4
4x + 1
bằng?
Câu 124. [1] Tính lim
x→−∞ x + 1
A. −4.
B. 4.



1−x2



− 3m + 4 = 0 có nghiệm
3
C. 0 < m ≤ .
D. m ≥ 0.
4

− 4.2 x+

C. −1.

1−x2

D. 2.

Câu 125. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối bát diện đều.
B. Khối lăng trụ tam giác.
C. Khối tứ diện.
D. Khối lập phương.
Câu 126. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. 2n2 lần.
C. n3 lần.
D. 2n3 lần.
x−3 x−2 x−1

x
Câu 127. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2].
B. (2; +∞).
C. [2; +∞).
D. (−∞; 2).
Câu 128. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4




a3 3
a3 3
a3 3

a3 3
A.
.
B.
.
C.
.
D.
.
24
6
12
36
Trang 10/10 Mã đề 1


Câu 129. Cho hình chóp S .ABCD có√đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
S .ABCD là
của AD, biết S H ⊥ (ABCD), S A =√a 5. Thể tích khối chóp √
4a3
2a3 3
4a3 3
2a3
A.
.
B.
.
C.
.
D.

.
3
3
3
3
Câu 130. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 10 .(3)40
C 20 .(3)20
C 40 .(3)10
C 20 .(3)30
A. 50 50 .
B. 50 50 .
C. 50 50 .
D. 50 50 .
4
4
4
4
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 11/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A

3.

2.
B

5.

4. A
D

7.
11.

6. A

C

8.

C

9.

C

10. A

B
D


13.
15. A
17.

C

12.

B

14.

B

16.

B

18.

D

19. A

20.

D

21. A


22.

D

23. A

24. A

D

25.

D

26.

27.

D

28.

29.

D

30. A

31.
33.


C

C

32. A

B

C

34.

35. A

36. A

37.

C

38.

B

40.

39. A
41.
B


44.

45.

B

46.

47.

48.

C
B

51.

D

42. A

C

43.

49.

D


D

53. A

B
D
B

50.

D

52.

D

54.

55.

D

56. A

57.

B

58.


59.

B

60. A

61.

C

C

63. A

62.

D

64.

D

65.

B

66.

67.


B

68.
1

D

B
C


69.

D

70.

71. A
73.

B

B

72.

C

74.


C

76.

75. A

D

77.

B

78. A

79.

B

80.

D

82.

D

81.
83.

C


84.

B

85.

D

86.

C
D

87.

C

88. A

89.

C

90.

91.

C


92. A

93.

B

94. A

95.

B

96. A

97.

D

99.

D

D

98.

C

100. A


101.

C

102. A

103.

C

104.

B

105.

C

106.

B

108.

B

110.

B


107.

B

109.

D

111. A

112.

113. A

114. A

115.

116. A

C

117. A
119.

C

C

118.


B

120.

B

121.

B

122.

B

123.

B

124.

B

125.

C

126.

C


127.

C

128.

C

129. A

130.

2

B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×