TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; 3).
B. A0 (−3; −3; −3).
C. A0 (−3; 3; 3).
D. A0 (−3; 3; 1).
x = 1 + 3t
Câu 2. [1232h] Trong không gian Oxyz, cho đường thẳng d :
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua
z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
trình là
x
=
1
+
3t
x
=
−1
+
2t
x
=
1
+
7t
x = −1 + 2t
A.
B.
.
D.
y = 1 + 4t .
y = −10 + 11t . C.
y=1+t
y = −10 + 11t .
z = 1 − 5t
z = 6 − 5t
z = 1 + 5t
z = −6 − 5t
Câu 3. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
B. V = 3S h.
C. V = S h.
A. V = S h.
3
Câu 4. Khối đa diện đều loại {3; 3} có số mặt
A. 5.
B. 4.
C. 3.
1
D. V = S h.
2
D. 2.
3a
, hình chiếu vng góc
Câu 5. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
2
của S trên mặt phẳng (ABCD) là √
trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD) bằng
a
a 2
2a
a
A. .
B.
.
C.
.
D. .
4
3
3
3
0 0 0
d = 60◦ . Đường chéo
Câu 6. Cho lăng trụ đứng ABC.A B C có đáy là tam giác vuông tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0
là
√
√
√
3
3
3
√
2a
6
a
6
4a
6
B.
.
C.
.
D.
.
A. a3 6.
3
3
3
!
1
1
1
Câu 7. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
5
3
A. .
B. .
C. +∞.
D. 2.
2
2
2mx + 1
1
Câu 8. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. 1.
B. −5.
C. 0.
D. −2.
Z 1
6
2
3
Câu 9. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x ) − √
. Tính
f (x)dx.
0
3x + 1
A. 4.
B. 2.
2−n
Câu 10. Giá trị của giới hạn lim
bằng
n+1
A. 0.
B. 1.
C. 6.
D. −1.
C. −1.
D. 2.
Câu 11. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng (S AB). Thiết diện của hình chóp S .ABCD với mặt phẳng (AIC) có diện tích là
Trang 1/10 Mã đề 1
√
√
√
a2 2
a2 5
11a2
a2 7
A.
.
B.
.
C.
.
D.
.
4
16
32
8
Câu 12. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất khơng thay đổi?
A. 15 tháng.
B. 16 tháng.
C. 17 tháng.
D. 18 tháng.
Câu 13. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 7 năm.
B. 8 năm.
C. 10 năm.
D. 9 năm.
t
9
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
Câu 14. [4] Xét hàm số f (t) = t
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. Vô số.
B. 2.
C. 0.
D. 1.
3
2
Câu 15. Giá
√ trị cực đại của hàm số y =
√ x − 3x − 3x + 2
√
A. 3 + 4 2.
B. −3 − 4 2.
C. 3 − 4 2.
√
D. −3 + 4 2.
Câu 16. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 27 lần.
B. Tăng gấp 18 lần.
C. Tăng gấp 9 lần.
D. Tăng gấp 3 lần.
Câu 17. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
23
13
9
5
B. −
.
C.
.
D.
.
A. − .
16
100
100
25
Câu 18. Cho
√ số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.
A. |z| = 17.
B. |z| = 10.
C. |z| = 10.
D. |z| = 17.
Câu 19. Khối đa diện đều loại {5; 3} có số đỉnh
A. 12.
B. 8.
C. 20.
D. 30.
Câu 20. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 + 2e
1 + 2e
1 − 2e
1 − 2e
.
B. m =
.
C. m =
.
D. m =
.
A. m =
4e + 2
4 − 2e
4e + 2
4 − 2e
Câu 21. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
√ tích khối chóp S .ABC
√ với đáy và S C = a 3. 3Thể
√là
√
3
3
a 6
2a 6
a 3
a3 3
.
B.
.
C.
.
D.
.
A.
12
9
2
4
Câu 22. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 9 mặt.
C. 6 mặt.
D. 4 mặt.
Câu 23. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 1200 cm2 .
B. 160 cm2 .
C. 120 cm2 .
D. 160 cm2 .
Câu 24. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 3 mặt.
C. 4 mặt.
D. 9 mặt.
x2
Câu 25. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = 1.
B. M = e, m = 0.
C. M = e, m = .
D. M = , m = 0.
e
e
Trang 2/10 Mã đề 1
√
x2 + 3x + 5
Câu 26. Tính giới hạn lim
x→−∞
4x − 1
1
A. .
B. 1.
4
C. 0.
1
D. − .
4
Câu 27. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 13.
B. 13.
C. 2020.
D. log2 2020.
Câu 28. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S BC) bằng
√
2a 57
a 57
A.
.
B.
.
C. a 57.
D.
19
19
π
x
Câu 29. [2-c] Giá trị lớn nhất của hàm số y = e cos x trên đoạn 0; là
2
√
3 π6
1 π3
A.
e .
B. 1.
C. e .
D.
2
2
[ = 60◦ , S O
a. Góc BAD
√
a 57
.
17
√
2 π4
e .
2
Câu 30. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng
√
a 3
a
a
A. a.
B.
.
C. .
D. .
2
3
2
Câu 31. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x+1 y−4 z−4
x−2 y−3 z+4
=
=
và d0 :
=
=
đường thẳng d :
2
3
−5
3
−2
−1
x−2 y−2 z−3
x−2 y+2 z−3
A.
=
=
.
B.
=
=
.
2
3
4
2
2
2
x y z−1
x y−2 z−3
C. = =
.
D. =
=
.
1 1
1
2
3
−1
Câu 32. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11
9
A.
.
B. 5.
C. .
D. 7.
2
2
√
Câu 33. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) √
bằng
√
√
3a
3a 38
3a 58
a 38
A.
.
B.
.
C.
.
D.
.
29
29
29
29
Câu 34. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là
√
√
a3 3
a3 3
a3
a3 3
.
B.
.
C.
.
D.
.
A.
4
8
4
12
Câu 35. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {4; 3}.
B. {3; 5}.
C. {3; 4}.
D. {5; 3}.
Câu 36. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 3.
B. 0, 2.
C. 0, 5.
D. 0, 4.
Câu 37. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
C. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
Trang 3/10 Mã đề 1
Câu 38. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√
√
√ chóp S .ABCD là
3
3
a 3
a 3
a3 2
a3 6
A.
.
B.
.
C.
.
D.
.
48
24
16
48
Câu 39. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng
√
√
√
a 2
a 2
.
B. a 2.
C. a 3.
D.
.
A.
2
3
Câu 40. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt√bên (S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√ là
3
3
3
3
a 3
8a 3
4a 3
8a 3
A.
.
B.
.
C.
.
D.
.
9
9
9
3
√
Câu 41. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. 63.
C. Vô số.
D. 62.
Câu 42. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
18
6
15
9
!
3n + 2
Câu 43. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a2 − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 5.
B. 3.
C. 4.
D. 2.
Câu 44. [1] Giá trị của biểu thức 9log3 12 bằng
A. 144.
B. 24.
C. 4.
D. 2.
Câu 45. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
Câu 46. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
đến đường√thẳng BD0 bằng
√
√
√
c a2 + b2
a b2 + c2
b a2 + c2
abc b2 + c2
.
B. √
.
C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 47. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 3 mặt.
C. 5 mặt.
D. 4 mặt.
Câu 48. [1] !Tập xác định của hàm số y! = log3 (2x + 1) là
!
1
1
1
A.
; +∞ .
B. −∞; .
C. −∞; − .
2
2
2
!
1
D. − ; +∞ .
2
Câu 49. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 0.
B. 13.
C. Không tồn tại.
D. 9.
Câu 50. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng
√
cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3 √
√
2 3
A. 1.
B. 2.
C.
.
D. 3.
3
Trang 4/10 Mã đề 1
Câu 51. Khối đa diện đều loại {3; 4} có số mặt
A. 6.
B. 8.
C. 12.
D. 10.
Câu 52. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích khối
√ chóp S .ABCD là
√
3
3
3
√
a 3
2a 3
a
3
A.
.
B.
.
C. a3 3.
.
D.
3
3
6
Câu 53. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
A. .
B. 9.
C. 6.
D. .
2
2
Câu 54. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
A. lim [ f (x)g(x)] = ab.
x→+∞
B. lim [ f (x) + g(x)] = a + b.
x→+∞
f (x) a
D. lim
= .
x→+∞ g(x)
b
x→+∞
C. lim [ f (x) − g(x)] = a − b.
x→+∞
Câu 55. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của√|z + 2 + i|
√
√
√
12 17
.
B. 34.
C. 68.
D. 5.
A.
17
x2 − 9
Câu 56. Tính lim
x→3 x − 3
A. 6.
B. +∞.
C. −3.
D. 3.
1
Câu 57. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3
√
một đoạn có độ dài bằng 24.
A. m = −3.
B. m = −3, m = 4.
C. m = 4.
D. −3 ≤ m ≤ 4.
n−1
Câu 58. Tính lim 2
n +2
A. 0.
B. 3.
C. 1.
D. 2.
x−3 x−2 x−1
x
Câu 59. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (2; +∞).
B. (−∞; 2].
C. (−∞; 2).
D. [2; +∞).
1
Câu 60. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 < m ≤ 1.
B. 2 < m ≤ 3.
C. 0 ≤ m ≤ 1.
D. 2 ≤ m ≤ 3.
Câu 61. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 3.
B. 2.
C. Vô số.
D. 1.
d = 30◦ , biết S BC là tam giác đều
Câu 62. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
9
13
16
26
Câu 63. [3] Biết rằng giá trị lớn nhất của hàm số y =
số tự nhiên. Tính S = m2 + 2n3
A. S = 24.
B. S = 32.
ln2 x
m
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
C. S = 22.
D. S = 135.
Trang 5/10 Mã đề 1
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
B. xy = −e + 1.
C. xy0 = ey − 1.
D. xy0 = −ey − 1.
Câu 64. [3-12217d] Cho hàm số y = ln
A. xy0 = ey + 1.
Câu 65. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m > 3.
C. m ≤ 3.
D. m < 3.
tan x + m
nghịch biến trên khoảng
Câu 66. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
m tan x + 1
π
0; .
4
A. (1; +∞).
B. (−∞; 0] ∪ (1; +∞). C. [0; +∞).
D. (−∞; −1) ∪ (1; +∞).
Câu 67. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 2.
B. 1.
C. 0.
D. 3.
! x3 −3mx2 +m
1
Câu 68. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m ∈ (0; +∞).
B. m ∈ R.
C. m , 0.
D. m = 0.
Câu 69. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 6 mặt.
C. 8 mặt.
D. 7 mặt.
Câu 70. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối chóp S .ABCD là
√
√
3
3
√
a3 15
a
a
5
6
A.
.
B. a3 6.
C.
.
D.
.
3
3
3
1
Câu 71. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 ≤ m ≤ −1.
B. (−∞; −2) ∪ (−1; +∞). C. (−∞; −2] ∪ [−1; +∞). D. −2 < m < −1.
Câu 72. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng 2n + 1.
B. Số cạnh của khối chóp bằng 2n.
C. Số mặt của khối chóp bằng 2n+1.
D. Số mặt của khối chóp bằng số cạnh của khối chóp.
Câu 73. Hàm số y =
A. x = 2.
x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 3.
C. x = 1.
D. x = 0.
Câu 74. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (0; 2).
B. (−∞; 1).
C. (2; +∞).
D. R.
Câu 75. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối lập phương.
B. Khối 12 mặt đều.
D. Khối bát diện đều.
C. Khối tứ diện đều.
Câu 76. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
A. .
B. 3.
C. 1.
D. .
2
2
Câu 77. Dãy số nào sau đây có giới hạn khác 0?
1
1
n+1
sin n
A. √ .
B. .
C.
.
D.
.
n
n
n
n
Trang 6/10 Mã đề 1
Câu 78. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 2.
B. 6.
C. 1.
D. −1.
Câu 79. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −2.
B. x = 0.
C. x = −5.
D. x = −8.
Câu 80. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 0.
B. 1.
C. 2.
D. 3.
Câu 81. Khối đa diện đều loại {3; 5} có số mặt
A. 20.
B. 8.
D. 30.
C. 12.
Câu 82. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45√◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là
10a3 3
.
B. 10a3 .
C. 40a3 .
D. 20a3 .
A.
3
Câu 83. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết S H ⊥ (ABCD), S A =√a 5. Thể tích khối chóp S .ABCD là
√
4a3 3
2a3
2a3 3
4a3
.
B.
.
C.
.
D.
.
A.
3
3
3
3
log(mx)
Câu 84. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0.
B. m < 0 ∨ m > 4.
C. m ≤ 0.
D. m < 0 ∨ m = 4.
x−1
Câu 85. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
√ có độ dài bằng
√ đều ABI có hai đỉnh A,√B thuộc (C), đoạn thẳng AB
B. 6.
C. 2 2.
D. 2.
A. 2 3.
Câu 86. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 18.
B.
.
C. 27.
D. 12.
2
1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
Câu 87. [12210d] Xét các số thực dương x, y thỏa mãn log3
x + 2y
Pmin của P = x +
√ y.
√
√
√
18 11 − 29
9 11 − 19
9 11 + 19
2 11 − 3
A. Pmin =
. B. Pmin =
. C. Pmin =
. D. Pmin =
.
21
9
9
3
Câu 88. Khối đa diện đều loại {5; 3} có số cạnh
A. 12.
B. 8.
C. 30.
D. 20.
√
Câu 89. Thể tích của khối lập phương có cạnh bằng a 2
√
3
√
√
2a
2
A. V = 2a3 .
B. 2a3 2.
C. V = a3 2.
D.
.
3
Câu 90. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
A. −e.
B. − .
C. − .
D. − 2 .
e
2e
e
π
Câu 91. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3
√
trị của biểu √
thức T = a + b 3.
√
A. T = 2 3.
B. T = 2.
C. T = 3 3 + 1.
D. T = 4.
log 2x
Câu 92. [3-1229d] Đạo hàm của hàm số y =
là
x2
1 − 2 ln 2x
1 − 4 ln 2x
1 − 2 log 2x
1
A. y0 = 3
.
B. y0 =
.
C. y0 =
.
D. y0 = 3
.
3
3
x ln 10
2x ln 10
x
2x ln 10
Trang 7/10 Mã đề 1
Câu 93. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 3
a3 5
a3 5
a3 5
A.
.
B.
.
C.
.
D.
.
12
6
12
4
Câu 94. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 20.
B. 15, 36.
C. 3, 55.
D. 24.
Câu 95. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
. Khi đó thể tích khối lăng trụ là
BC là
4
√
√
√
√
a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
36
12
6
24
Câu 96. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 2e + 1.
B. 3.
C. 2e.
D. .
e
Câu 97. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = ln x − 1.
B. y0 = 1 − ln x.
C. y0 = x + ln x.
D. y0 = 1 + ln x.
Câu 98. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (III).
B. (II) và (III).
C. Cả ba mệnh đề.
D. (I) và (II).
x
9
Câu 99. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. −1.
B. 1.
C. 2.
D. .
2
Câu 100. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
B. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
C. Cả ba câu trên đều sai.
D. F(x) = G(x) trên khoảng (a; b).
Câu 101. Dãy
!n số nào có giới hạn bằng 0?
6
A. un =
.
B. un = n2 − 4n.
5
!n
−2
D. un =
.
3
n3 − 3n
C. un =
.
n+1
Câu 102.
Z Mệnh!0đề nào sau đây sai?
A.
f (x)dx = f (x).
B. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a;Zb).
C. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
f (x)dx = F(x) + C.
D. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Trang 8/10 Mã đề 1
Câu 103. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 8 đỉnh, 10 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 104. Tứ diện đều thuộc loại
A. {3; 4}.
B. {5; 3}.
2x + 1
Câu 105. Tính giới hạn lim
x→+∞ x + 1
A. 1.
B. 2.
C. {3; 3}.
D. {4; 3}.
C. −1.
D.
5
Câu 106. Tính lim
n+3
A. 2.
B. 0.
C. 3.
D. 1.
1
.
2
Câu 107. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; +∞).
B. Hàm số nghịch biến trên khoảng (−∞; 2).
C. Hàm số nghịch biến trên khoảng (0; 2).
D. Hàm số đồng biến trên khoảng (0; 2).
Câu 108. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vô nghiệm.
B. 3.
C. 1.
D. 2.
Câu 109. Trong các khẳng định sau, khẳng định nào sai?
√
A. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
B. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
C. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
D. Cả ba đáp án trên.
Câu 110. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Khơng có câu nào B. Câu (II) sai.
sai.
2n + 1
Câu 111. Tìm giới hạn lim
n+1
A. 2.
B. 0.
C. Câu (III) sai.
D. Câu (I) sai.
C. 3.
D. 1.
Câu 112. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m > 0.
B. m = 0.
C. m , 0.
Câu 113. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai cạnh.
B. Năm cạnh.
C. Ba cạnh.
!x
1
1−x
Câu 114. [2] Tổng các nghiệm của phương trình 3 = 2 +
là
9
A. − log2 3.
B. log2 3.
C. 1 − log2 3.
D. m < 0.
D. Bốn cạnh.
D. − log3 2.
Câu 115. Cho hàm số y = x3 − 2x2 + x +!1. Mệnh đề nào dưới đây đúng?
!
1
1
A. Hàm số đồng biến trên khoảng ; 1 .
B. Hàm số nghịch biến trên khoảng ; 1 .
3
3
!
1
C. Hàm số nghịch biến trên khoảng −∞; .
D. Hàm số nghịch biến trên khoảng (1; +∞).
3
Trang 9/10 Mã đề 1
Câu 116. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp
√ đã cho
√ là 1728. Khi đó, các kích thước của hình hộp là
A. 2 3, 4 3, 38.
B. 2, 4, 8.
C. 8, 16, 32.
D. 6, 12, 24.
Câu 117. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {5}.
B. {3}.
C. {5; 2}.
D. {2}.
√
√
Câu 118.
√ Tìm giá trị lớn nhất của
√ hàm số y = x + 3 + 6 −
√x
A. 3 2.
B. 2 3.
C. 2 + 3.
D. 3.
Câu 119. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. 1.
B. +∞.
C. 0.
D. 2.
Câu 120. Tìm m để hàm số y = mx + 3x + 12x + 2 đạt cực đại tại x = 2
A. m = −1.
B. m = −2.
C. m = −3.
D. m = 0.
2n + 1
Câu 121. Tính giới hạn lim
3n + 2
2
3
1
A. .
B. 0.
C. .
D. .
3
2
2
Câu 122. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
√
B. y = loga x trong đó a = 3 − 2.
A. y = log 14 x.
D. y = log √2 x.
C. y = log π4 x.
3
2
Câu 123. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 3.
B. 8.
C. 4.
D. 6.
2
4
3
Câu 124. Cho z √
là nghiệm của phương trình
√ x + x + 1 = 0. Tính P = z + 2z − z
−1 + i 3
−1 − i 3
.
B. P =
.
C. P = 2.
D. P = 2i.
A. P =
2
2
Câu 125. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + 2 sin 2x.
B. 1 + 2 sin 2x.
C. −1 + sin x cos x.
D. 1 − sin 2x.
2
2n − 1
Câu 126. Tính lim 6
3n + n4
2
D. 1.
A. 2.
B. 0.
C. .
3
√
√
4n2 + 1 − n + 2
Câu 127. Tính lim
bằng
2n − 3
3
A. .
B. 2.
C. +∞.
D. 1.
2
x−1 y z+1
Câu 128. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
= =
và
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. −x + 6y + 4z + 5 = 0.
B. 2x + y − z = 0.
C. 10x − 7y + 13z + 3 = 0.
D. 2x − y + 2z − 1 = 0.
Câu 129. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 46cm3 .
C. 27cm3 .
D. 72cm3 .
√
Câu 130. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là √
√
√
a3 3
a3 3
a3
3
A. a 3.
B.
.
C.
.
D.
.
12
3
4
Trang 10/10 Mã đề 1
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 11/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
C
3. A
C
5.
B
4.
B
6. A
D
7.
2.
9. A
8.
C
10.
C
11.
D
12.
B
13.
D
14.
B
15.
D
16. A
17.
B
19.
C
B
D
C
35.
B
38. A
39. A
B
D
D
44. A
C
45. A
46.
47.
D
C
48.
49. A
50.
B
D
B
52. A
53.
D
54.
55. A
D
56. A
B
58. A
59.
D
60.
B
B
61.
B
62.
63.
B
64.
65. A
67.
D
41.
B
43.
C
33.
C
37.
57.
D
31.
36. A
51.
B
29.
B
32.
40.
D
27. A
30. A
34.
20.
25.
26.
28.
C
23.
21. A
24.
18.
C
66. A
C
69. A
1
68.
D
70.
D
71. A
72.
C
73.
75.
74. A
76.
D
77.
78.
C
79.
B
D
D
B
80. A
81. A
82.
D
83. A
84.
D
85. A
86. A
D
87.
89.
B
91.
D
93.
95.
99.
B
90.
C
94.
B
96.
B
98.
D
B
D
101.
C
92. A
C
97.
88.
100.
B
102.
B
103.
B
104.
105.
B
106.
D
107.
110. A
111. A
112.
115.
C
C
116.
B
D
118. A
120.
C
121. A
122.
123. A
124.
125. A
126.
127.
129.
B
114. A
C
117. A
119.
C
108.
109. A
113.
D
D
C
2
B
D
C
B
128.
C
130.
C