TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy
một góc 60◦ . Thể tích√khối chóp S .ABCD là
√
√
√
2a3 3
a3 3
a3 3
3
A.
.
B.
.
C. a 3.
D.
.
3
6
3
Câu 2. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
B. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
C. Z
F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
u0 (x)
dx = log |u(x)| + C.
D.
u(x)
Câu 3. Dãy
!n số nào sau đây có giới
!n hạn là 0?
!n
!n
5
1
4
5
A. − .
B.
.
C.
.
D.
.
3
3
3
e
1
Câu 4. [12213d] Có bao nhiêu giá trị ngun của m để phương trình |x−1| = 3m−2 có nghiệm duy nhất?
3
A. 1.
B. 3.
C. 2.
D. 4.
Câu 5. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −2e2 .
B. 2e4 .
C. −e2 .
D. 2e2 .
Câu 6. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. 3n3 lần.
B. n2 lần.
C. n3 lần.
D. n lần.
Câu 7. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vô nghiệm.
B. 3.
C. 2.
D. 1.
Câu 8. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
ab
1
ab
A. √
.
B. √
.
C. 2
.
D. √
.
2
a +b
a2 + b2
a2 + b2
2 a2 + b2
Câu 9. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a = loga 2.
B. log2 a = − loga 2.
C. log2 a =
.
D. log2 a =
.
log2 a
loga 2
Câu 10. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {5}.
B. {3}.
C. {5; 2}.
D. {2}.
Câu 11. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối 20 mặt đều.
C. Khối tứ diện đều.
D. Khối bát diện đều.
Câu 12. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t − 6t(m/s). Tính quãng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 8 m.
B. 24 m.
C. 16 m.
D. 12 m.
2
Câu 13. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
B. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
C. Số cạnh của khối chóp bằng số mặt của khối chóp.
D. Số đỉnh của khối chóp bằng số mặt của khối chóp.
Trang 1/10 Mã đề 1
Câu 14. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
B. Cả ba đáp án trên.
C. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
√
D. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
Câu 15. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và
AC = BD = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng
√
√
√
a 2
a 2
A. a 2.
B.
.
C.
.
D. 2a 2.
4
2
1
Câu 16. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (−∞; 1) và (3; +∞). B. (1; 3).
C. (−∞; 3).
D. (1; +∞).
1 − n2
Câu 17. [1] Tính lim 2
bằng?
2n + 1
1
1
1
A. .
B. 0.
C. .
D. − .
3
2
2
Câu 18. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là
√
3
3
√
a 6
a3 15
a 5
.
B.
.
C.
.
D. a3 6.
A.
3
3
3
Câu 19. Khối đa diện đều loại {3; 3} có số đỉnh
A. 5.
B. 3.
C. 2.
D. 4.
Câu 20. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
C. 1.
A. 2.
B. .
2
D.
ln 2
.
2
√
Câu 21. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là
√
3
√
a 3
a3 3
a3
3
A.
.
B. a 3.
C.
.
D.
.
3
12
4
Câu 22. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.423.000.
B. 102.016.000.
C. 102.016.000.
D. 102.424.000.
4x + 1
bằng?
Câu 23. [1] Tính lim
x→−∞ x + 1
A. 4.
B. 2.
C. −1.
D. −4.
Câu 24. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; 6, 5].
B. (4; +∞).
C. (−∞; 6, 5).
D. [6, 5; +∞).
Câu 25. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
6
15
9
18
Câu 26. Khối đa diện đều loại {3; 4} có số cạnh
A. 12.
B. 6.
C. 10.
D. 8.
Trang 2/10 Mã đề 1
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
B. xy = e − 1.
C. xy0 = −ey + 1.
D. xy0 = ey + 1.
Câu 27. [3-12217d] Cho hàm số y = ln
A. xy0 = −ey − 1.
Câu 28. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.
√
√
√
√
5 13
A. 26.
B.
.
C. 2.
D. 2 13.
13
Câu 29. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai cạnh.
B. Năm cạnh.
C. Bốn cạnh.
D. Ba cạnh.
Câu 30. Khối đa diện đều loại {4; 3} có số mặt
A. 6.
B. 10.
C. 8.
D. 12.
Câu 31. Khối đa diện đều loại {3; 4} có số đỉnh
A. 10.
B. 8.
C. 4.
D. 6.
Câu 32. Dãy số nào sau đây có giới hạn khác 0?
n+1
1
A.
.
B. .
n
n
1
C. √ .
n
D.
Câu 33. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −2.
B. x = 0.
C. x = −8.
sin n
.
n
D. x = −5.
Câu 34. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −9.
B. −12.
C. −5.
D. −15.
Câu 35. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng
√
√
√
a 6
a 6
a 6
A.
.
B.
.
C.
.
D. a 6.
2
3
6
Câu 36. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 13 năm.
C. 10 năm.
D. 12 năm.
Câu 37. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. 3.
B. −3.
C. −6.
D. 0.
Câu 38. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 1.
B. −2 + 2 ln 2.
C. 4 − 2 ln 2.
D. e.
Câu 39. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vô nghiệm.
B. 3.
C. 1.
D. 2.
Câu 40. Tính lim
A. −∞.
cos n + sin n
n2 + 1
B. 1.
C. +∞.
D. 0.
Câu 41. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
Thể tích khối chóp S .ABC√là
vng góc√với đáy và S C = a 3. √
√
3
3
2a 6
a 3
a3 3
a3 6
A.
.
B.
.
C.
.
D.
.
9
4
2
12
Câu 42. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 10.
B. ln 14.
C. ln 12.
D. ln 4.
Trang 3/10 Mã đề 1
Câu 43. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|
√
√
√
√
12 17
.
A. 5.
B. 68.
C. 34.
D.
17
Câu 44. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. Cả ba mệnh đề.
B. (I) và (III).
7n2 − 2n3 + 1
Câu 45. Tính lim 3
3n + 2n2 + 1
2
A. - .
B. 1.
3
Câu 46.
Z Các khẳng định nào sau
Z đây là sai?
f (x)dx = F(x) +C ⇒
A.
Z
C.
f (x)dx = F(x) + C ⇒
C. (II) và (III).
C.
f (u)dx = F(u) +C. B.
Z
f (t)dt = F(t) + C. D.
7
.
3
Z
Z
D. (I) và (II).
D. 0.
!0
f (x)dx = f (x).
Z
k f (x)dx = k
f (x)dx, k là hằng số.
Câu 47. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 5%.
B. 0, 7%.
C. 0, 8%.
D. 0, 6%.
Câu 48. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp
√ là 1728. Khi đó, các kích thước của hình hộp là
√ đã cho
B. 8, 16, 32.
C. 6, 12, 24.
D. 2, 4, 8.
A. 2 3, 4 3, 38.
Câu 49. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; 3; 3).
B. A0 (−3; 3; 1).
C. A0 (−3; −3; −3).
D. A0 (−3; −3; 3).
Câu 50. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 5
a3 5
a3 5
a3 3
.
B.
.
C.
.
D.
.
A.
12
6
4
12
Câu 51. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
B. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
!
un
C. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn !
un
D. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
x−3
Câu 52. [1] Tính lim
bằng?
x→3 x + 3
A. +∞.
B. 1.
C. 0.
D. −∞.
Trang 4/10 Mã đề 1
log 2x
là
x2
1 − 4 ln 2x
1
B. y0 =
.
C. y0 = 3
.
3
2x ln 10
2x ln 10
Câu 53. [3-1229d] Đạo hàm của hàm số y =
A. y0 =
1 − 2 ln 2x
.
x3 ln 10
D. y0 =
1 − 2 log 2x
.
x3
Câu 54. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≤ 3.
B. −3 ≤ m ≤ 3.
C. −2 ≤ m ≤ 2.
D. m ≥ 3.
Câu 55. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 2).
B. Hàm số nghịch biến trên khoảng (0; 2).
C. Hàm số đồng biến trên khoảng (0; 2).
D. Hàm số đồng biến trên khoảng (0; +∞).
Câu 56. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng
√
cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3
√
√
2 3
A.
.
B. 3.
C. 2.
D. 1.
3
2−n
Câu 57. Giá trị của giới hạn lim
bằng
n+1
A. 0.
B. −1.
C. 1.
D. 2.
Câu 58. [1] !Tập xác định của hàm số y! = log3 (2x + 1) là
!
1
1
1
B.
; +∞ .
C. − ; +∞ .
A. −∞; .
2
2
2
!
1
D. −∞; − .
2
Câu 59. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m = 0.
B. m < 0.
C. m , 0.
D. m > 0.
Câu 60. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là
√
√
√
a3 3
2a3 3
5a3 3
4a3 3
.
B.
.
C.
.
D.
.
A.
3
2
3
3
2n + 1
Câu 61. Tìm giới hạn lim
n+1
A. 0.
B. 3.
C. 2.
D. 1.
Câu 62. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng
√
√
√
√
20 3
14 3
A. 6 3.
B.
.
C. 8 3.
D.
.
3
3
Câu 63. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng
√
A. 5.
B. 25.
C. 5.
√
Câu 64. [3] Biết rằng giá trị lớn nhất của hàm số y =
D.
1
.
5
ln2 x
m
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 32.
B. S = 24.
C. S = 135.
log2 240 log2 15
Câu 65. [1-c] Giá trị biểu thức
−
+ log2 1 bằng
log3,75 2 log60 2
A. 3.
B. −8.
C. 1.
D. S = 22.
D. 4.
Trang 5/10 Mã đề 1
Câu 66. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
B. − .
C. −e.
A. − .
e
2e
x2 − 9
Câu 67. Tính lim
x→3 x − 3
A. −3.
B. 6.
C. +∞.
D. −
1
.
e2
D. 3.
Câu 68. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4
√
√
√
√
a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
36
6
24
a
1
Câu 69. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 7.
B. 2.
C. 1.
D. 4.
Câu 70. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 210 triệu.
B. 216 triệu.
C. 220 triệu.
D. 212 triệu.
Câu 71. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 18 tháng.
B. 16 tháng.
C. 15 tháng.
D. 17 tháng.
√
Câu 72. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√
√
√ tích khối chóp S .ABC3 √
a 6
a3 6
a3 2
a3 6
.
B.
.
C.
.
D.
.
A.
36
18
6
6
x
Câu 73. Tính diện tích hình phẳng
√ giới hạn bởi các đường y = xe , y = 0, x = 1.
3
1
3
A. 1.
B.
.
C. .
D. .
2
2
2
Câu 74. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α
aα
A. aα+β = aα .aβ .
B. aαβ = (aα )β .
C. aα bα = (ab)α .
D. β = a β .
a
Câu 75. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; −1) và (0; +∞). B. (−∞; 0) và (1; +∞). C. (−1; 0).
D. (0; 1).
!
!
!
x
4
1
2
2016
Câu 76. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T = 2017.
B. T = 1008.
C. T = 2016.
D. T =
.
2017
Câu 77. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (3; 4; −4).
B. ~u = (1; 0; 2).
C. ~u = (2; 1; 6).
D. ~u = (2; 2; −1).
Trang 6/10 Mã đề 1
Câu 78. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. 4.
B. .
C. .
D. .
8
2
4
Câu 79. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 14 năm.
C. 10 năm.
D. 12 năm.
2
Câu 80. Tính
√ mơ đun của số phức z√4biết (1 + 2i)z = 3 + 4i. √
A. |z| = 5.
B. |z| = 5.
C. |z| = 2 5.
D. |z| = 5.
x3 − 1
Câu 81. Tính lim
x→1 x − 1
A. −∞.
B. 0.
D. +∞.
C. 3.
√
Câu 82. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√ cho là
√
√
√
πa3 3
πa3 3
πa3 3
πa3 6
.
B. V =
.
C. V =
.
D. V =
.
A. V =
6
2
6
3
2n2 − 1
Câu 83. Tính lim 6
3n + n4
2
C. 2.
D. 1.
A. 0.
B. .
3
1
Câu 84. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = e − 1.
B. xy = e + 1.
C. xy0 = −ey − 1.
D. xy0 = −ey + 1.
Câu 85. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 27.
B. 12.
C.
.
D. 18.
2
Câu 86. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một hoặc hai.
B. Có hai.
C. Có một.
D. Khơng có.
Câu 87. Khối đa diện đều loại {3; 3} có số mặt
A. 4.
B. 3.
C. 5.
Câu 88.
√ Thể tích của khối lăng√trụ tam giác đều có cạnh bằng 1 là:
3
3
3
.
B.
.
C. .
A.
12
2
4
D. 2.
√
3
D.
.
4
Câu 89. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị nhỏ nhất của biểu thức P = x + 2y thuộc tập nào dưới
" đây?
!
"
!
5
5
A. [3; 4).
B. (1; 2).
C. 2; .
D.
;3 .
2
2
Câu 90. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 9 mặt.
C. 7 mặt.
Câu 91. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 − ln x.
B. y0 = ln x − 1.
5
Câu 92. Tính lim
n+3
A. 0.
B. 1.
√
ab.
D. 8 mặt.
C. y0 = x + ln x.
D. y0 = 1 + ln x.
C. 2.
D. 3.
Trang 7/10 Mã đề 1
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 93. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là
√
√
√
a3 2
a3 3
a3 3
2
A.
.
B.
.
C. 2a 2.
D.
.
24
12
24
Câu 94. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {4; 3}.
B. {3; 3}.
C. {5; 3}.
D. {3; 4}.
Câu 95. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≤ .
B. m ≥ .
C. m < .
D. m > .
4
4
4
4
8
Câu 96. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 82.
B. 81.
C. 96.
D. 64.
Câu 97. Cho
Z hai hàm yZ = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
0
B. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z
C. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
D. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Câu 98. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 0.
B. e2016 .
C. 22016 .
D. 1.
Câu 99. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 3ac
3b + 3ac
A.
.
B.
.
C.
.
c+2
c+1
c+2
D.
3b + 2ac
.
c+3
Câu 100. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tam giác.
B. Hai khối chóp tứ giác.
C. Một khối chóp tam giác, một khối chóp ngữ giác.
D. Một khối chóp tam giác, một khối chóp tứ giác.
Câu 101. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 2).
B. (0; +∞).
C. (0; 2).
D. (−∞; 0) và (2; +∞).
Câu 102. Khối đa diện đều loại {3; 5} có số đỉnh
A. 8.
B. 12.
D. 30.
C. 20.
3
2
Câu 103. Giá
√ trị cực đại của hàm số√y = x − 3x − 3x + 2
√
A. −3 − 4 2.
B. 3 − 4 2.
C. −3 + 4 2.
√
D. 3 + 4 2.
Câu 104. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. 2n2 lần.
B. n3 lần.
C. n3 lần.
D. 2n3 lần.
Câu 105. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
Trang 8/10 Mã đề 1
Câu 106. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục ảo.
B. Trục thực.
C. Hai đường phân giác y = x và y = −x của các góc tọa độ.
D. Đường phân giác góc phần tư thứ nhất.
[ = 60◦ , S O
Câu 107. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.√Khoảng cách từ O đến (S
√ BC) bằng
√
a 57
2a 57
a 57
A.
.
B.
.
C.
.
D. a 57.
19
19
17
[ = 60◦ , S A ⊥ (ABCD).
Câu 108. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh
√ S C là a. Thể tích khối chóp S .ABCD là
√
3
3
√
a 3
a 2
a3 2
3
A.
.
B.
.
C. a 3.
D.
.
6
4
12
! x3 −3mx2 +m
1
Câu 109. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m = 0.
B. m , 0.
C. m ∈ (0; +∞).
D. m ∈ R.
√
√
Câu 110. Tìm giá trị lớn nhất của hàm
√
√ số y = x + 3 + √6 − x
C. 3 2.
D. 2 3.
A. 3.
B. 2 + 3.
Câu 111. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (0; 2).
B. (−∞; 1).
C. (2; +∞).
D. R.
Câu 112. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (II) sai.
B. Câu (I) sai.
Câu 113. Khối chóp ngũ giác có số cạnh là
A. 12 cạnh.
B. 11 cạnh.
C. Khơng có câu nào D. Câu (III) sai.
sai.
C. 9 cạnh.
D. 10 cạnh.
!
3n + 2
2
+ a − 4a = 0. Tổng các phần tử
Câu 114. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
n+2
của S bằng
A. 3.
B. 5.
C. 2.
D. 4.
√
2
x + 3x + 5
Câu 115. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. 0.
B. 1.
C. .
D. − .
4
4
x−2
Câu 116. Tính lim
x→+∞ x + 3
2
A. 2.
B. − .
C. 1.
D. −3.
3
Câu 117. Khối đa diện đều loại {5; 3} có số đỉnh
A. 30.
B. 20.
C. 8.
D. 12.
Trang 9/10 Mã đề 1
Câu 118. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
Câu 119. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC) một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √
√
a3 3
a3 3
a3 3
a3
.
B.
.
C.
.
D.
.
A.
4
12
8
4
Câu 120. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3.
Tính f (2) + f (4)?
A. 11.
B. 10.
C. 12.
D. 4.
1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
Câu 121. [3-1132d] Cho dãy số (un ) với un =
n2 + 1
1
A. Dãy số un khơng có giới hạn khi n → +∞.
B. lim un = .
2
C. lim un = 1.
D. lim un = 0.
Câu 122. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là 4.
B. Phần thực là −1, phần ảo là −4.
C. Phần thực là 4, phần ảo là 1.
D. Phần thực là 4, phần ảo là −1.
Câu 123. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = [2; 1].
B. D = R \ {1; 2}.
C. D = (−2; 1).
D. D = R.
√
2
Câu 124. [1228d] Cho phương trình (2 log3 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. 63.
C. Vô số.
D. 62.
d = 120◦ .
Câu 125. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
B. 4a.
C. 3a.
D. 2a.
A.
2
log(mx)
Câu 126. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0.
B. m < 0 ∨ m > 4.
C. m < 0 ∨ m = 4.
D. m ≤ 0.
2
Câu 127. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
C. .
D. 6.
A. 9.
B. .
2
2
Câu 128. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 2.
B. 3.
C. 0.
D. 1.
Câu 129. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm
0
A đến đường
√ thẳng BD bằng
√
√
√
a b2 + c2
abc b2 + c2
c a2 + b2
b a2 + c2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Trang 10/10 Mã đề 1
Câu 130. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 6 cạnh, 4 mặt. B. 4 đỉnh, 8 cạnh, 4 mặt. C. 6 đỉnh, 6 cạnh, 4 mặt. D. 3 đỉnh, 3 cạnh, 3 mặt.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 11/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
D
2.
3.
C
4. A
5.
C
6.
7.
C
8. A
9.
D
D
C
10. A
11. A
12.
D
13.
D
14.
C
15.
C
16. A
17.
D
18.
19.
D
20. A
21. A
22.
23. A
24. A
26. A
27.
B
D
B
29.
D
30. A
31.
D
32. A
33.
C
35.
C
28.
34.
B
B
36.
D
37.
38.
D
39.
D
40.
D
41.
D
43.
D
42.
B
44.
D
45. A
46. A
47.
48.
C
50.
54.
B
49. A
D
52.
B
51.
C
53. A
C
B
55.
C
56.
C
57.
58.
C
59.
C
61.
C
60.
B
B
62. A
63.
B
64. A
65.
B
67.
B
66.
B
68. A
69. A
1
70.
72.
D
D
77.
D
D
83. A
85.
86. A
87. A
D
88.
B
92. A
D
89.
D
91.
D
93. A
94.
95. A
C
B
98. A
D
100.
97.
C
99.
C
B
103.
104.
B
105. A
C
106.
D
101.
102.
108.
C
81.
84. A
96.
B
79. A
B
82.
90.
C
75.
B
78.
80.
B
73. A
B
74.
76.
71.
C
107. A
B
109. A
110.
C
111. A
112.
C
113.
D
115.
D
114.
D
116.
C
117.
118.
C
119.
120.
C
121.
122.
D
123.
124.
D
125. A
126.
127.
C
128. A
129. A
130. A
2
B
C
B
D
C