Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt 7 (339)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (151.42 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Bát diện đều thuộc loại
A. {4; 3}.
B. {5; 3}.

C. {3; 4}.

Câu 2. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 4 mặt.
C. 6 mặt.

D. {3; 3}.
D. 3 mặt.

Câu 3. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
B. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
C. Cả ba đáp án trên.

D. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
Câu 4. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1


1
1
1
B. m ≤ .
C. m > .
D. m ≥ .
A. m < .
4
4
4
4
2,4
Câu 5. [1-c] Giá trị của biểu thức 3 log0,1 10 bằng
A. 0, 8.
B. 7, 2.
C. −7, 2.
D. 72.
Câu 6. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây thứ
5 đến giây thứ 15 là bao nhiêu?
A. 1202 m.
B. 2400 m.
C. 6510 m.
D. 1134 m.
Câu 7. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, √biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là√
a3
4a3 3
a3
2a3 3
.

B.
.
C.
.
D.
.
A.
3
3
3
6
Câu 8. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 2.
B. 0.
C. 1.
D. 3.
Câu 9. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tứ giác.
B. Một khối chóp tam giác, một khối chóp tứ giác.
C. Một khối chóp tam giác, một khối chóp ngữ giác.
D. Hai khối chóp tam giác.

Câu 10. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) √
bằng


a 38
3a

3a 38
3a 58
A.
.
B.
.
C.
.
D.
.
29
29
29
29
Câu 11. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 22.
B. y(−2) = 6.
C. y(−2) = 2.
D. y(−2) = −18.
Câu 12. Khối đa diện đều loại {3; 4} có số mặt
A. 8.
B. 10.

C. 6.

D. 12.

C. 0.


D. +∞.

Câu 13. Giá trị của lim(2x2 − 3x + 1) là
x→1

A. 1.

B. 2.

Trang 1/10 Mã đề 1


Câu 14. Khối đa diện đều loại {4; 3} có số mặt
A. 8.
B. 10.

C. 6.

D. 12.

Câu 15.
đề nào sau đây
Z [1233d-2] Mệnh Z
Z sai?
[ f (x) − g(x)]dx =

A.

f (x)dx −


g(x)dx, với mọi f (x), g(x) liên tục trên R.

Z

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
C.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z
D.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
B.

Câu 16. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 9 mặt.
C. 3 mặt.
D. 4 mặt.
q
2
Câu 17. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].

B. m ∈ [0; 2].
C. m ∈ [−1; 0].
D. m ∈ [0; 1].

Câu 18. Xác định phần ảo của số √
phức z = ( 2 + 3i)2 √
A. −7.
B. −6 2.
C. 6 2.
D. 7.
Câu 19. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≥ 3.
B. −3 ≤ m ≤ 3.
C. −2 ≤ m ≤ 2.
D. m ≤ 3.
Câu 20. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Ba mặt.
B. Bốn mặt.
C. Một mặt.
Câu 21. [1] Đạo hàm của hàm số y = 2 x là
A. y0 = 2 x . ln x.

B. y0 = 2 x . ln 2.

C. y0 =

1
.
ln 2


D. Hai mặt.
D. y0 =

1
2 x . ln

x

.

Câu 22. [1] Hàm số nào đồng√biến trên khoảng (0; +∞)?
A. y = loga x trong đó a = 3 − 2.
B. y = log √2 x.
C. y = log π4 x.
D. y = log 14 x.
Câu 23. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 + ln x.
B. y0 = 1 − ln x.

C. y0 = ln x − 1.

D. y0 = x + ln x.

Câu 24. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =

. Thể tích khối lăng trụ đã cho bằng
3


2 3
D. 2.
A.
.
B. 1.
C. 3.
3
x2 − 9
Câu 25. Tính lim
x→3 x − 3
A. +∞.
B. −3.
C. 3.
D. 6.
1
Câu 26. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.
B. 2 < m ≤ 3.
C. 0 < m ≤ 1.
D. 2 ≤ m ≤ 3.
!x
1
Câu 27. [2] Tổng các nghiệm của phương trình 31−x = 2 +

9

A. − log3 2.
B. 1 − log2 3.
C. log2 3.
D. − log2 3.
Trang 2/10 Mã đề 1


Câu 28. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là



3
4a3 3
5a3 3
a3 3
2a 3
A.
.
B.
.
C.
.
D.
.
3
3
3

2
Câu 29. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 2ac
3b + 3ac
.
B.
.
C.
.
A.
c+2
c+3
c+1

D.

3b + 3ac
.
c+2

Câu 30. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 2.

B. 4.


C. 3.

D. 1.

Câu 31. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
B. m ≤ 0.
C. m ≥ 0.
D. m > − .
A. − < m < 0.
4
4
Câu 32. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. Cả ba câu trên đều sai.
B. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
C. F(x) = G(x) trên khoảng (a; b).
D. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
√3
4
Câu 33. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
7
5
2
5
A. a 3 .
B. a 3 .
C. a 3 .

D. a 8 .
Câu 34. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 8%.
B. 0, 5%.
C. 0, 6%.
D. 0, 7%.
 π
Câu 35. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


3 π6
2 π4
1 π3
A. e .
B.
e .
C. 1.
D.
e .
2
2
2
Câu 36. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vuông góc√với đáy và S C = a 3. √
Thể tích khối chóp S .ABC√là


3
3
2a 6
a 3
a3 3
a3 6
A.
.
B.
.
C.
.
D.
.
9
4
2
12
log2 240 log2 15
Câu 37. [1-c] Giá trị biểu thức

+ log2 1 bằng
log3,75 2 log60 2
A. 1.
B. 3.
C. −8.
D. 4.
Trang 3/10 Mã đề 1



Câu 38. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (1; +∞).
!
1
C. Hàm số đồng biến trên khoảng ; 1 .
3
Câu 39. Khối đa diện đều loại {3; 3} có số cạnh
A. 4.
B. 6.

!
1
B. Hàm số nghịch biến trên khoảng −∞; .
!3
1
D. Hàm số nghịch biến trên khoảng ; 1 .
3

C. 8.

D. 5.

Câu 40. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai ngun hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (III) sai.

B. Câu (I) sai.


Câu 41. Khối đa diện đều loại {3; 3} có số mặt
A. 2.
B. 4.

C. Câu (II) sai.

D. Khơng có câu nào
sai.

C. 3.

D. 5.

x
Câu 42.
√ Tính diện tích hình phẳng giới hạn bởi các đường y = xe , y = 0, x = 1.
3
3
1
.
B. .
C. 1.
D. .
A.
2
2
2
Câu 43. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1

1
B. V = 3S h.
C. V = S h.
D. V = S h.
A. V = S h.
2
3
!
3n + 2
Câu 44. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a2 − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 2.
B. 5.
C. 3.
D. 4.

Câu 45. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
x2 − 12x + 35
Câu 46. Tính lim
x→5
25 − 5x
A. +∞.
B. −∞.


2
C. − .
5

D.

2
.
5

x+2
Câu 47. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 2.
B. 1.
C. 3.
D. Vô số.
Câu 48. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 13 năm.
C. 12 năm.
D. 10 năm.
Trang 4/10 Mã đề 1



log 2x

Câu 49. [3-1229d] Đạo hàm của hàm số y =
x2
1
1 − 4 ln 2x
1 − 2 ln 2x
A. y0 = 3
.
B. y0 =
.
C. y0 = 3
.
3
2x ln 10
2x ln 10
x ln 10
Câu 50. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Bát diện đều.
B. Tứ diện đều.
C. Nhị thập diện đều.

D. y0 =

1 − 2 log 2x
.
x3

D. Thập nhị diện đều.


Câu 51. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường



√ thẳng BD bằng
a b2 + c2
abc b2 + c2
c a2 + b2
b a2 + c2
.
B. √
.
C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2

x2 + 3x + 5
Câu 52. Tính giới hạn lim
x→−∞
4x − 1
1
1

A. − .
B. 0.
C. .
D. 1.
4
4
x−3
bằng?
Câu 53. [1] Tính lim
x→3 x + 3
A. 1.
B. 0.
C. −∞.
D. +∞.
1
Câu 54. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3

một đoạn có độ dài bằng 24.
A. m = −3, m = 4.
B. −3 ≤ m ≤ 4.
C. m = 4.
D. m = −3.
Câu 55. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C) và (A0C 0 D) bằng




2a 3

a 3
a 3
B.
.
C.
.
D.
.
A. a 3.
2
2
3
Câu 56. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m > .
B. m ≤ .
C. m < .
D. m ≥ .
4
4
4
4
Câu 57. Khối đa diện đều loại {3; 4} có số cạnh
A. 6.
B. 12.
C. 8.
D. 10.



Câu 58. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã

√ cho là


πa3 3
πa3 6
πa3 3
πa3 3
.
B. V =
.
C. V =
.
D. V =
.
A. V =
3
2
6
6

Câu 59. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. Vô nghiệm.
B. 3 nghiệm.
C. 1 nghiệm.
D. 2 nghiệm.

Câu 60. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. e.
B. 4 − 2 ln 2.
C. −2 + 2 ln 2.
Câu 61. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
A. − 2 .
B. − .
C. − .
e
2e
e

D. 1.
D. −e.

3a
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

a
a 2
2a
a
A. .
B.

.
C.
.
D. .
4
3
3
3
Câu 62. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =

Trang 5/10 Mã đề 1


Câu 63. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 − 2e
1 + 2e
A. m =
.
B. m =
.
C. m =
.
4e + 2
4 − 2e
4 − 2e
Câu 64. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng số mặt của khối chóp.
B. Số đỉnh của khối chóp bằng số mặt của khối chóp.
C. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.

D. Số đỉnh của khối chóp bằng số cạnh của khối chóp.

1 + 2e
.
4e + 2

D. m =

Câu 65. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. 3n3 lần.
B. n lần.
C. n2 lần.
D. n3 lần.
1
ln x p 2
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
Câu 66. Gọi F(x) là một nguyên hàm của hàm y =
x
3
1
8
8
1
A. .
B. .
C. .
D. .
3
9
3

9
Câu 67. Khối đa diện đều loại {3; 3} có số đỉnh
A. 3.
B. 5.
C. 2.
D. 4.
Câu 68. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
2a
8a
a
5a
.
B.
.
C.
.
D. .
A.
9
9
9
9
Câu 69. [4-1246d] Trong tất cả√các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn nhất
√ của |z|
A. 2.
B. 3.
C. 1.
D. 5.

Câu 70. Cho
Z hai hàm yZ = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
B. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z
C. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
D. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Câu 71. Dãy số nào sau đây có giới hạn là 0?
n2 + n + 1
n2 − 2
A. un =
.
B.
u
=
.

n
5n − 3n2
(n + 1)2

C. un =

Câu 72. Tứ diện đều thuộc loại
A. {4; 3}.
B. {3; 3}.

n2 − 3n
.
n2

C. {3; 4}.

1 − 2n
.
5n + n2

D. un =

D. {5; 3}.

Câu 73. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.
B. 1.
C. Vơ nghiệm.
D. 3.
1 − 2n

Câu 74. [1] Tính lim
bằng?
3n + 1
1
2
2
A. 1.
B. .
C. .
D. − .
3
3
3
2

Câu 75. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 3.
B. 2.
C. 4.


Câu 76.
Tìm
giá
trị
lớn
nhất
của
hàm
số

y
=
x
+
3
+
6√− x


A. 3 2.
B. 2 + 3.
C. 2 3.

D. 5.
D. 3.
Trang 6/10 Mã đề 1


Câu 77. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt√bên (S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√ là
3
3
3
3
8a 3
8a 3
4a 3
a 3
.

B.
.
C.
.
D.
.
A.
9
3
9
9
1 + 2 + ··· + n
Câu 78. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
1
A. lim un = 1.
B. lim un = .
2
C. Dãy số un khơng có giới hạn khi n → +∞.
D. lim un = 0.
Câu 79. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (0; 2).
C. R.

D. (2; +∞).

Câu 80. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành

A. Một hình chóp tam giác và một hình chóp tứ giác.
B. Hai hình chóp tứ giác.
C. Một hình chóp tứ giác và một hình chóp ngũ giác.
D. Hai hình chóp tam giác.
Câu 81. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Đường phân giác góc phần tư thứ nhất.
B. Hai đường phân giác y = x và y = −x của các góc tọa độ.
C. Trục ảo.
D. Trục thực.
Câu 82. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 8 cạnh, 4 mặt. B. 6 đỉnh, 6 cạnh, 4 mặt. C. 4 đỉnh, 6 cạnh, 4 mặt. D. 3 đỉnh, 3 cạnh, 3 mặt.
x−1 y z+1
= =

Câu 83. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 10x − 7y + 13z + 3 = 0.
B. −x + 6y + 4z + 5 = 0.
C. 2x + y − z = 0.
D. 2x − y + 2z − 1 = 0.
Câu 84. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 3
a3 5

a3 5
A.
.
B.
.
C.
.
D.
.
6
4
12
12
Câu 85. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều. C. Khối tứ diện đều.
D. Khối lập phương.
Câu 86. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vơ nghiệm.
B. 1.
C. 2.

D. 3.

2

1−n
Câu 87. [1] Tính lim 2
bằng?
2n + 1

1
1
A. − .
B. .
2
3

1
.
2
 π π
3
Câu 88. Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 1.
B. 7.
C. −1.
D. 3.
Câu 89. Khối đa diện đều loại {5; 3} có số cạnh
A. 30.
B. 20.

C. 0.

D.

C. 8.

D. 12.
Trang 7/10 Mã đề 1



!
1
1
1
Câu 90. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3
5
C. +∞.
D. .
A. 2.
B. .
2
2
x−3 x−2 x−1
x
Câu 91. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là

A. [2; +∞).
B. (2; +∞).
C. (−∞; 2).
D. (−∞; 2].
Câu 92. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số đồng biến trên khoảng (1; 2).
B. Hàm số nghịch biến trên khoảng (0; 1).
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số nghịch biến trên khoảng (−∞; 0).
Câu 93. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .
D. k = .
A. k = .
6
9
18
15
!
!
!
x
4
1

2
2016
. Tính tổng T = f
Câu 94. [3] Cho hàm số f (x) = x
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T =
.
B. T = 2016.
C. T = 2017.
D. T = 1008.
2017


Câu 95. [12215d] Tìm m để phương trình 4 x+
9
3
A. 0 ≤ m ≤ .
B. 0 < m ≤ .
4
4
n−1
Câu 96. Tính lim 2
n +2
A. 1.

B. 3.

1−x2



− 4.2 x+

1−x2

− 3m + 4 = 0 có nghiệm

C. m ≥ 0.

3
D. 0 ≤ m ≤ .
4

C. 0.

D. 2.

Câu 97. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng 2n+1.
B. Số đỉnh của khối chóp bằng 2n + 1.
C. Số cạnh của khối chóp bằng 2n.
D. Số mặt của khối chóp bằng số cạnh của khối chóp.
Câu 98. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng

(S AB). Thiết diện của hình chóp S .ABCD với√mặt phẳng (AIC) có diện√tích là

2
a 5
11a2
a2 7
a2 2
A.
.
B.
.
C.
.
D.
.
16
32
8
4
Câu 99. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
3

Câu 100. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e5 .
B. e2 .
C. e3 .

D. e.
Câu 101. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {2}.
B. {5}.
C. {5; 2}.
D. {3}.
Z 2
ln(x + 1)
Câu 102. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. 1.
B. 0.
C. −3.
D. 3.
Trang 8/10 Mã đề 1


Câu 103. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)

cùng vng góc với đáy, S C = a 3. Thể tích khối chóp S .ABCD


3
a3
a
a3 3
3

3
A.
.
B. a .
C.
.
D.
.
3
9
3
Câu 104. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 2.
B. 3.
C. 1.
D. +∞.
Câu 105. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 5 mặt. B. 6 đỉnh, 9 cạnh, 6 mặt. C. 5 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 6 cạnh, 6 mặt.
Câu 106. Khối đa diện đều loại {3; 5} có số đỉnh
A. 8.
B. 20.

C. 12.

D. 30.

Câu 107. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
D. 2e.

A. 2e + 1.
B. 3.
C. .
e
Câu 108. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Khơng thay đổi.
B. Tăng lên n lần.
C. Tăng lên (n − 1) lần. D. Giảm đi n lần.
Câu 109. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
B. 3.
C. .
D. 1.
A. .
2
2


Câu 110. Phần thực
√ và phần ảo của số phức
√ z = 2 − 1 − 3i lần lượt√l

A. Phần thực là √2 − 1, phần ảo là −√ 3.
B. Phần thực là 2, √
phần ảo là 1 − √
3.
C. Phần thực là 2 − 1, phần ảo là 3.

D. Phần thực là 1 − 2, phần ảo là − 3.
Câu 111. Phát biểu nào sau đây là sai?
A. lim qn = 1 với |q| > 1.
1
C. lim √ = 0.
n

1
= 0 với k > 1.
nk
D. lim un = c (Với un = c là hằng số).
B. lim

1
Câu 112. [1] Giá trị của biểu thức log √3
bằng
10
1
1
C. .
D. 3.
A. −3.
B. − .
3
3
Câu 113. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba cạnh.
B. Năm cạnh.
C. Bốn cạnh.
D. Hai cạnh.

!
5 − 12x
Câu 114. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. Vơ nghiệm.
B. 2.
C. 1.
D. 3.
Câu 115. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình chóp.
B. Hình tam giác.
C. Hình lăng trụ.
Câu 116. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 2.
B. 4.
C. −4.

Câu 117. Thể tích của khối lập phương
có cạnh bằng a 2



2a3 2
A. V = a3 2.
B.
.
C. 2a3 2.
3
2

Câu 118. Cho f (x) = sin x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 + 2 sin 2x.
B. 1 − sin 2x.
C. −1 + sin x cos x.

D. Hình lập phương.
D. −2.
D. V = 2a3 .
D. −1 + 2 sin 2x.
Trang 9/10 Mã đề 1


2

Câu 119. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 2 − log2 3.
B. 1 − log3 2.
C. 1 − log2 3.

D. 3 − log2 3.

Câu 120. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 3.
B. V = 5.
C. V = 4.
D. V = 6.
3
x −1
Câu 121. Tính lim

x→1 x − 1
A. 3.
B. 0.
C. −∞.
D. +∞.
Câu 122. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 24.
B. 21.
C. 22.
D. 23.
Câu 123. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi
M, N và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng




14 3
20 3
.
C.
.
D. 8 3.
B.
A. 6 3.
3
3
Câu 124. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu

A. lim+ f (x) = lim− f (x) = a.
B. lim+ f (x) = lim− f (x) = +∞.
x→a
x→a
x→a
x→a
C. f (x) có giới hạn hữu hạn khi x → a.
D. lim f (x) = f (a).
x→a

Câu 125. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với
đáy một góc 45◦ và AB = 3a, BC = 4a.
√ Thể tích khối chóp S .ABCD là
3
3
10a
.
C. 10a3 .
D. 20a3 .
A. 40a3 .
B.
3
Câu 126. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. 0.
B. 3.
C. −3.
D. −6.
Câu 127. √
Tính mơ đun của số phức z√biết (1 + 2i)z2 = 3 + 4i. √
4

B. |z| = 2 5.
C. |z| = 5.
A. |z| = 5.

D. |z| = 5.

Câu 128. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có vơ số.
B. Có hai.
C. Có một.
D. Khơng có.
Câu 129. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 1.

B. 2.

Câu 130. Dãy
!n số nào có giới hạn bằng 0?
!n
6
−2
A. un =
.
B. un =
.
5

3

C. 0.

C. un =

D. 3.
n3 − 3n
.
n+1

D. un = n2 − 4n.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1

4.

B

6.
8.

C

B

5.

C

7.

C

9.

10.

D

3.

C

1.

B

11.

D

12. A


D

13.

C

14.

C

15.

C

16.

C

17.

C

18.

C

19.

B
B


20.

B

21.

22.

B

23. A
D

24.
26.

B
D

28.
30.

C

25.

D

27.


D

29.

D

31.

D

32.

D

33.

34.

D

35.

36.

D

37.

38.


D

39.

B

40.

D

41.

B

42.

C

D

45.

46.

D

47. A

50.


C

D

D
C

D

43.

44.
48.

C

49.
D

C

51.

B

52. A

53.


B

54. A

55.

56.

57.

B

58. A

59.

60. A

61.

62.

D
B
D
B

63. A

C


64.

B

65.

D

66.

B

67.

D

68.

69. A

C
1


71.

70. A
72.


B

73. A
D

74.
76. A
78.

B

80.

D

82.

75.

C

77.

C

79.

B

81.


B

83. A

C

84.
86.

D

85.

B

89. A

90. A

91. A
D

97.

C

99.

C


96.

C

98.

C

100. A

B

104. A

105. A

106.
110. A

111. A

112.

113. A

114.
B

117.


C

108.

B

109. A

115.

C

102.

103. A
107.

D

94.

B

95.

101.

B


87. A

88. A
92.

D

C

D
B
C

116.

D

118.

D

119. A

120.

C

121. A

122.


C

123. A

124.

125.

D

127.
129.

D

126.

C
B

2

C

128.

B

130.


B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×