Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt 7 (577)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (156.27 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 11 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
B. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.

C. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
D. Cả ba đáp án trên.
Câu 2. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 2.
B. 1.
C. 3.

D. 5.

Câu 3. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC theo a


a3
a3 5
a3 15
a3 15
.


B.
.
C.
.
D.
.
A.
25
3
25
5

Câu 4. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vô số.
B. 62.
C. 63.
D. 64.
Câu 5. Giá√trị cực đại của hàm số y =√x3 − 3x2 − 3x + 2

B. −3 − 4 2.
C. 3 + 4 2.
A. 3 − 4 2.
cos n + sin n
Câu 6. Tính lim
n2 + 1
A. 0.
B. 1.
C. −∞.



D. −3 + 4 2.
D. +∞.

Câu 7. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó là:
A. 64cm3 .
B. 46cm3 .
C. 72cm3 .
D. 27cm3 .
Câu 8. √[2] Cho hình lâp phương√ABCD.A0 B0C 0 D0 cạnh a. √
Khoảng cách từ C đến AC√0 bằng
a 6
a 3
a 6
a 6
A.
.
B.
.
C.
.
D.
.
7
2
2
3
Câu 9. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α


α α
α
αβ
α β
A. a b = (ab) .
B. a = (a ) .
C. β = a β .
D. aα+β = aα .aβ .
a
Câu 10.! Dãy số nào sau đây có giới
!n hạn là 0?
!n
!n
n
1
5
5
4
A.
.
B.
.
C. − .
D.
.
3
3
3
e


Câu 11. [1] Biết log6 a = 2 thì log6 a bằng
A. 108.
B. 36.
C. 6.
D. 4.
Câu 12. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 − ln x.
B. y0 = x + ln x.

C. y0 = ln x − 1.

D. y0 = 1 + ln x.

Câu 13. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng



a 2
a 2
A. 2a 2.
B.
.
C. a 2.
D.
.
2
4
Câu 14. Khối đa diện đều loại {3; 3} có số đỉnh

A. 4.
B. 2.
C. 5.
D. 3.
Trang 1/11 Mã đề 1


Câu 15.
đề nào sau đây sai?
Z [1233d-2] Mệnh
Z
A.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z
B.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
C.
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
D.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
2

Câu 16. Tính
√ mơ đun của số phức z biết (1 + 2i)z = 3 + 4i. √
A. |z| = 2 5.
B. |z| = 5.
C. |z| = 5.

D. |z| =

√4
5.

Câu 17. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vuông góc
với (S BC).
√ là


√ Thể tích khối chóp S 3.ABC
3
a 2
a3 3
a3 3
a 3
.
B.
.
C.
.
D.
.
A.

6
12
12
4
2

Câu 18. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 3 − log2 3.
B. 2 − log2 3.
C. 1 − log3 2.
Câu 19. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 2.

B. 1.

C. 4.

Câu 20. [12214d] Với giá trị nào của m thì phương trình
A. 0 < m ≤ 1.

B. 2 < m ≤ 3.

D. 1 − log2 3.
1
3|x−1|

= 3m − 2 có nghiệm duy

D. 3.

1

3|x−2|

= m − 2 có nghiệm

C. 0 ≤ m ≤ 1.

D. 2 ≤ m ≤ 3.

Câu 21. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của hình chóp S .ABCD với√mặt phẳng (AIC) có diện√tích là

2
11a2
a2 5
a2 7
a 2
.
B.
.
C.
.
D.
.
A.
4
32

16
8
Câu 22. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. .
B. .
C. 4.
D. .
8
2
4
x−1
Câu 23. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
√ có độ dài bằng
√ đều ABI có hai đỉnh A,√B thuộc (C), đoạn thẳng AB
A. 2 3.
B. 6.
C. 2 2.
D. 2.
Câu 24. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
C. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
Câu 25. [3-12214d] Với giá trị nào của m thì phương trình

A. 2 ≤ m ≤ 3.

B. 0 < m ≤ 1.

Câu 26. Khối đa diện đều loại {3; 4} có số cạnh
A. 6.
B. 8.

1
3|x−2|

= m − 2 có nghiệm

C. 2 < m ≤ 3.

D. 0 ≤ m ≤ 1.

C. 10.

D. 12.
Trang 2/11 Mã đề 1


Câu 27. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)

cùng vng góc với đáy, S C = a 3. Thể tích khối chóp S .ABCD


3

a3
a
a3 3
3
3
A.
.
B. a .
C.
.
D.
.
3
3
9
Câu 28. Dãy số nào sau đây có giới hạn là 0?
n2 + n + 1
1 − 2n
A. un =
.
B. un =
.
2
(n + 1)
5n + n2
x2 − 3x + 3
đạt cực đại tại
x−2
A. x = 1.
B. x = 0.

x+1
Câu 30. Tính lim
bằng
x→+∞ 4x + 3
A. 3.
B. 1.

n2 − 3n
C. un =
.
n2

n2 − 2
D. un =
.
5n − 3n2

C. x = 2.

D. x = 3.

Câu 29. Hàm số y =

C.

1
.
3

D.


1
.
4

Câu 31. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {2}.
B. {3}.
C. {5}.
D. {5; 2}.
Câu 32. Khối đa diện đều loại {3; 5} có số cạnh
A. 12.
B. 30.

C. 20.

D. 8.

Câu 33. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
5a
2a
a
8a
A.
.
B.
.
C. .

D.
.
9
9
9
9
Câu 34. Tứ diện đều thuộc loại
A. {4; 3}.
B. {5; 3}.

C. {3; 3}.

D. {3; 4}.

Câu 35. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [1; +∞).
B. (−∞; −3].
C. [−1; 3].
D. [−3; 1].
Câu 36. Tìm giới hạn lim
A. 3.

2n + 1
n+1
B. 1.

C. 2.

D. 0.


Câu 37. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ
√ thức |z − 1 + 3i| = 3. Tìm
√ min |z − 1 − i|.
D. 10.
A. 2.
B. 1.
C. 2.
Câu 38. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = R \ {1; 2}.
B. D = (−2; 1).
C. D = R.
2

D. D = [2; 1].

Câu 39. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
A. .
B. 5.
C.
.
D. 7.
2
2
Câu 40. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 18 lần.
B. Tăng gấp 9 lần.

C. Tăng gấp 27 lần.
D. Tăng gấp 3 lần.
Câu 41. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng



a 3
2a 3
a 3
A.
.
B.
.
C.
.
D. a 3.
3
2
2
Trang 3/11 Mã đề 1


Câu 42. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
23
5
13
9
A. −

.
B. − .
C.
.
D.
.
100
16
100
25
Câu 43. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 1 nghiệm.
B. Vô nghiệm.
C. 2 nghiệm.
D. 3 nghiệm.
Câu 44. Trong các mệnh đề dưới đây, mệnh đề nào
! sai?
un
A. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn !
un
= 0.
B. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
vn
C. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
= −∞.
D. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim

vn
d = 30◦ , biết S BC là tam giác đều
Câu 45. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
26
9
16
13
Câu 46. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 25 triệu đồng.
B. 2, 20 triệu đồng.

C. 3, 03 triệu đồng.
D. 2, 22 triệu đồng.
Câu 47. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 3 đỉnh, 3 cạnh, 3 mặt. B. 6 đỉnh, 6 cạnh, 4 mặt. C. 4 đỉnh, 8 cạnh, 4 mặt. D. 4 đỉnh, 6 cạnh, 4 mặt.
Câu 48. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là −4.
B. Phần thực là 4, phần ảo là −1.
C. Phần thực là −1, phần ảo là 4.
D. Phần thực là 4, phần ảo là 1.
Câu 49. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun z.




5 13
.
B. 2 13.
C. 26.
D.
A. 2.
13
Câu 50. Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?
A. Tứ diện đều.
B. Nhị thập diện đều. C. Bát diện đều.
D. Thập nhị diện đều.
Câu 51. Xét hai câu sau
Z
Z
Z

(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (I) đúng.

B. Cả hai câu trên đúng. C. Chỉ có (II) đúng.

D. Cả hai câu trên sai.
d = 300 .
Câu 52. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
0
Độ dài cạnh bên CC = 3a. Thể tích V của khối lăng trụ đã cho. √


3a3 3
a3 3
3
3
A. V = 6a .
B. V = 3a 3.
C. V =
.
D. V =
.
2
2

Trang 4/11 Mã đề 1


Câu 53. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −4.
B. −2.
C. 4.

D. 2.

Câu 54. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 8 đỉnh, 10 cạnh, 6 mặt.
tan x + m
nghịch biến trên khoảng
Câu 55. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
m tan x + 1
 π
0; .
4
A. (−∞; −1) ∪ (1; +∞). B. (−∞; 0] ∪ (1; +∞). C. [0; +∞).
D. (1; +∞).
Câu 56. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 2.


B. 1.

C. 4.

D. 3.

2
Câu 57. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3 + (m√
+ 1)2 x trên [0; 1] bằng 2√
D. m = ± 3.
A. m = ±3.
B. m = ±1.
C. m = ± 2.

Câu 58. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. −5.
B. 6.
C. 5.
2

Câu 59.√Thể tích của tứ diện đều √
cạnh bằng a

3
3
a 2
a3 2
a 2
.

B.
.
C.
.
A.
4
2
12
2
Câu 60. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 5.
B. 6.
C. 8.

D. −6.

a3 2
D.
.
6
D. 7.


Câu 61. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã

√ cho là


πa3 3

πa3 6
πa3 3
πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =
.
2
6
3
6
Câu 62. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có hai.
B. Khơng có.
C. Có một.
D. Có một hoặc hai.
!
3n + 2
2
Câu 63. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 2.
B. 3.

C. 5.
D. 4.
2
x
Câu 64. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = , m = 0.
B. M = e, m = .
C. M = e, m = 1.
D. M = e, m = 0.
e
e
Câu 65. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3


2 3
A.
.
B. 3.
C. 2.

D. 1.
3
Trang 5/11 Mã đề 1


Câu 66. Dãy số nào sau đây có giới hạn khác 0?
n+1
1
B.
A. √ .
.
n
n
Câu 67. Khối đa diện đều loại {3; 4} có số mặt
A. 6.
B. 12.

C.

1
.
n

C. 10.

Câu 68. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [−1; 2).
B. (1; 2).
C. [1; 2].


D.

sin n
.
n

D. 8.
D. (−∞; +∞).

Câu 69. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị
" nhỏ! nhất của biểu thức P = x + 2y thuộc tập nào dưới
" đây?
!
5
5
A.
;3 .
B. [3; 4).
C. 2; .
D. (1; 2).
2
2
Câu 70. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 9 mặt.
C. 6 mặt.


ab.


D. 3 mặt.

Câu 71. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞

x→+∞

f (x) a
= .
A. lim
x→+∞ g(x)
b
C. lim [ f (x) + g(x)] = a + b.

B. lim [ f (x)g(x)] = ab.
x→+∞

D. lim [ f (x) − g(x)] = a − b.
x→+∞
x→+∞



x = 1 + 3t




Câu 72. [1232h] Trong không gian Oxyz, cho đường thẳng d : 

y = 1 + 4t . Gọi ∆ là đường thẳng đi qua




z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương


 trình là









x = −1 + 2t
x
=
1
+
7t
x
=
−1
+

2t
x
=
1
+
3t
















.
D. 
A. 
B. 
y = −10 + 11t .
y=1+t
y = −10 + 11t . C. 
y = 1 + 4t .

















z = −6 − 5t
z = 1 + 5t
z = 6 − 5t
z = 1 − 5t
Câu 73. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 + 2 sin 2x.
B. −1 + sin x cos x.
C. −1 + 2 sin 2x.

D. 1 − sin 2x.

Câu 74. Khối đa diện đều loại {5; 3} có số cạnh
A. 20.
B. 30.


C. 12.

D. 8.

Câu 75. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối bát diện đều. B. Khối lập phương.

C. Khối 12 mặt đều.

D. Khối tứ diện đều.

Câu 76. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −7.
B. −5.
C. −3.

D. Không tồn tại.

Câu 77. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. 1.
C. Vô nghiệm.
D. 3.
Câu 78. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
[ = 60◦ , S O

Câu 79. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S BC) bằng


a 57
a 57
2a 57
A.
.
B.
.
C. a 57.
D.
.
19
17
19
Trang 6/11 Mã đề 1


Câu 80. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + 1.
B. T = 4 + .
C. T = e + 3.
D. T = e + .

e
e
2,4
Câu 81. [1-c] Giá trị của biểu thức 3 log0,1 10 bằng
A. 72.
B. −7, 2.
C. 7, 2.
D. 0, 8.
Câu 82. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 16π.
B. V = 4π.
C. 32π.
D. 8π.
Câu 83. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m ≤ 3.
C. m < 3.
D. m > 3.
Câu 84. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 5
a3 3
a3 5
.
B.
.

C.
.
D.
.
A.
4
12
6
12
9x
Câu 85. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. 2.
B. 1.
C. −1.
D. .
2
Câu 86. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 17 tháng.
B. 18 tháng.
C. 15 tháng.
D. 16 tháng.
9t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
Câu 87. [4] Xét hàm số f (t) = t

9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 1.
B. Vơ số.
C. 2.
D. 0.
Câu 88. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng 2n.
B. Số đỉnh của khối chóp bằng 2n + 1.
C. Số mặt của khối chóp bằng 2n+1.
D. Số mặt của khối chóp bằng số cạnh của khối chóp.
Câu 89. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .
D. k = .
A. k = .
15
9
18
6
Câu 90. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d song song với (P).
B. d nằm trên P hoặc d ⊥ P.
C. d nằm trên P.

D. d ⊥ P.
x2 − 5x + 6
Câu 91. Tính giới hạn lim
x→2
x−2
A. −1.
B. 1.
C. 5.
D. 0.
Câu 92. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng số mặt của khối chóp.
Trang 7/11 Mã đề 1


B. Số đỉnh của khối chóp bằng số mặt của khối chóp.
C. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
D. Số đỉnh của khối chóp bằng số cạnh của khối chóp.


Câu 93. Tìm giá trị lớn nhất của√hàm số y = x + 3 + 6 −√x
C. 2 + 3.
A. 3.
B. 2 3.
Câu 94. [1] Đạo hàm của hàm số y = 2 x là
A. y0 = 2 x . ln 2.

B. y0 = 2 x . ln x.

C. y0 =



D. 3 2.

1
2 x . ln

x

D. y0 =

.

1
.
ln 2

Câu 95. Cho z là√nghiệm của phương trình√ x2 + x + 1 = 0. Tính P = z4 + 2z3 − z
−1 − i 3
−1 + i 3
A. P =
.
B. P =
.
C. P = 2.
D. P = 2i.
2
2
Câu 96. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 + 2e
1 + 2e

1 − 2e
A. m =
.
B. m =
.
C. m =
.
4e + 2
4 − 2e
4 − 2e

D. m =
2

1 − 2e
.
4e + 2

2

sin x
Câu 97.
+ 2cos x lần
√ [3-c] Giá trị nhỏ nhất và giá√trị lớn nhất của hàm số f (x) = 2
√ lượt là
A. 2 và 3.
B. 2 và 2 2.
C. 2 và 3.
D. 2 2 và 3.


Câu 98. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC) một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √

a3 3
a3 3
a3 3
a3
.
B.
.
C.
.
D.
.
A.
4
12
8
4
Câu 99. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục ảo.
B. Hai đường phân giác y = x và y = −x của các góc tọa độ.
C. Đường phân giác góc phần tư thứ nhất.
D. Trục thực.
Câu 100. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3

A.
.
B.
.
C.
.
D. a3 .
12
6
24
x−3 x−2 x−1
x
+
+
+
và y = |x + 2| − x − m (m là tham
Câu 101. [4-1213d] Cho hai hàm số y =
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [2; +∞).
B. (−∞; 2].
C. (2; +∞).
D. (−∞; 2).
Câu 102. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là



a3
a3 3
a3 3
3
A.
.
B. a .
C.
.
D.
.
3
6
2
log(mx)
Câu 103. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0.
B. m ≤ 0.
C. m < 0 ∨ m > 4.
D. m < 0 ∨ m = 4.
Câu 104. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. 2n2 lần.
B. n3 lần.
C. 2n3 lần.
D. n3 lần.
Trang 8/11 Mã đề 1



Câu 105. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Z
u0 (x)
dx = log |u(x)| + C.
B.
u(x)
C. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
D. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
Câu 106. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tam giác.
B. Một hình chóp tứ giác và một hình chóp ngũ giác.
C. Hai hình chóp tứ giác.
D. Một hình chóp tam giác và một hình chóp tứ giác.
Câu 107. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. e.
B. 4 − 2 ln 2.
C. 1.
D. −2 + 2 ln 2.
Câu 108. Khối lập phương thuộc loại
A. {5; 3}.
B. {3; 4}.

C. {3; 3}.

D. {4; 3}.


Câu 109. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 4 mặt.
C. 3 mặt.
D. 9 mặt.
Câu 110. Cho hai hàm y = f (x), y = Z
g(x) có đạo hàm
Z trên R. Phát biểu nào sau đây đúng?
A. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f 0 (x)dx =
g0 (x)dx.
Z
Z
B. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
C. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.

Câu 111. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1

1
C. − 2 .
D. − .
A. −e.
B. − .
e
e
2e
Câu 112. Dãy số nào có giới hạn bằng 0?
!n
!n
−2
6
n3 − 3n
2
A. un =
.
B. un = n − 4n.
C. un =
.
D. un =
.
n+1
3
5

Câu 113. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 3 nghiệm.
B. 1 nghiệm.
C. Vô nghiệm.

D. 2 nghiệm.
x−2 x−1
x
x+1
Câu 114. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−3; +∞).
B. (−∞; −3].
C. (−∞; −3).
D. [−3; +∞).
Câu 115. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối tứ diện đều.

C. Khối 12 mặt đều.

D. Khối bát diện đều.

Câu 116. [2-c] Giá trị lớn nhất của hàm số y = ln(x + x + 2) trên đoạn [1; 3] là
A. ln 4.
B. ln 14.
C. ln 12.

D. ln 10.
2

Câu 117. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 6 mặt.
C. 4 mặt.

D. 5 mặt.
Trang 9/11 Mã đề 1


Câu 118. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
1
1
ab
.
B. 2
.
D. √
.
A. √
.
C. √
2
a +b
2 a2 + b2
a2 + b2

a2 + b2
Câu 119. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 7 năm.
B. 8 năm.
C. 10 năm.
D. 9 năm.
Câu 120. Phát biểu nào sau đây là sai?
1
= 0.
n
1
C. lim qn = 0 (|q| > 1).
D. lim k = 0.
n
2
Câu 121. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x + x − y − 12 = 0. Tìm giá trị nhỏ nhất của
P = xy + x + 2y + 17
A. −15.
B. −5.
C. −9.
D. −12.
A. lim un = c (un = c là hằng số).

B. lim

Câu 122. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. f (x) có giới hạn hữu hạn khi x → a.
B. lim+ f (x) = lim− f (x) = a.

x→a
x→a
C. lim+ f (x) = lim− f (x) = +∞.
D. lim f (x) = f (a).
x→a

x→a

x→a

Câu 123. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối lập phương.

C. Khối tứ diện đều.

D. Khối 12 mặt đều.

Câu 124. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 3ac
3b + 3ac
3b + 2ac
.
B.
.
C.
.
D.
.
A.

c+3
c+2
c+1
c+2

Câu 125. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
C. .
D. −3.
A. 3.
B. − .
3
3
x
Câu 126. Tính diện tích hình phẳng giới hạn bởi các đường
√ y = xe , y = 0, x = 1.
3
3
1
A. .
B. 1.
C.
.
D. .
2
2
2
x
x

Câu 127. [1225d] Tìm tham số thực m để phương trình log2 (5 − 1) log4 (2.5 − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m ≥ 3.
C. m < 3.
D. m > 3.
Câu 128. Khối đa diện đều loại {5; 3} có số mặt
A. 8.
B. 20.

C. 12.

D. 30.

Câu 129. [1] Cho a > 0, a , 1. Giá trị của biểu thức log a1 a2 bằng
1
1
A. .
B. −2.
C. − .
D. 2.
2
2
Câu 130. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m√2 + 1)2 x trên [0; 1] bằng 8√
A. m = ±1.
B. m = ±3.
C. m = ± 3.
D. m = ± 2.
- - - - - - - - - - HẾT- - - - - - - - - -


Trang 10/11 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

C

2. A

3. A

4.

5.

D

6. A

7.

D

8.

9.


C

13.

D

12.

B

14. A
16.

15. A
C

17.
19.

D

10. A
D

11.

B

B


21.

D

D

18.

B

20.

B

22.

23. A

D

24.
26.

C

25.
27. A

28.


29. A

30.
C

31.

C

32.

D
B
D
B

33.

D

34.

C

35.

D

36.


C

38.

C

39. A

40.

C

41. A

42. A

37.

B

43.

44. A

C

45.

D


46.

47.

D

48.

49.

D

50.

D
B
D

51.

B

52.

C

53.

B


54.

C

55.
57.

D

56.

D

58. A

B

59.

C

60.

D

61.

C

62.


D

64.

D

63.
65.
67.

D
C

66.
D

68.
1

B
D


69. A

71. A

72.


B

73.

74.

B

75. A

76.

D

77.

80.

C

83. A

81.

B

84.

B


C

D

88. A

90.

B

91. A

92.

B

93.

94. A

D
C

95.
D

96.

D


97.

C

98.

99.

B

101. A

100. A
102.

D

103.

B

105.

106. A

D
B

107. A


108.
110.

D

86.

B

87.

104.

B

79.

78. A

85.

C

D

109.

B

112.


C

C

111.

D

113.

D

114.

B

115. A

116.

B

117.

C

118.

C


119.

D

120.

C

121.

D

122.

D

123.

124.

D

125.

126.
128.
130.

B

C
D

2

B
C

127.

B

129.

B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×