TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Khơng có.
B. Có hai.
C. Có một.
D. Có vơ số.
Câu 2. [1] Giá trị của biểu thức 9log3 12 bằng
A. 4.
B. 2.
C. 144.
D. 24.
Câu 3. Khối đa diện đều loại {3; 3} có số cạnh
A. 6.
B. 8.
C. 5.
D. 4.
Câu 4. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không rút
tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp theo.
Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban
đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó khơng rút tiền ra?
A. 14 năm.
B. 11 năm.
C. 12 năm.
D. 10 năm.
Câu 5. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 1.
B. 2.
C. 7.
D. 3.
log(mx)
= 2 có nghiệm thực duy nhất
Câu 6. [3-1226d] Tìm tham số thực m để phương trình
log(x + 1)
A. m < 0 ∨ m = 4.
B. m ≤ 0.
C. m < 0.
D. m < 0 ∨ m > 4.
Câu 7. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 0.
B. 9.
C. 7.
D. 5.
Câu 8. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích hình
hộp đã cho là 1728. Khi đó, các kích thước của hình hộp là
√
√
A. 8, 16, 32.
B. 6, 12, 24.
C. 2, 4, 8.
D. 2 3, 4 3, 38.
Câu 9. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = ln x − 1.
B. y0 = x + ln x.
C. y0 = 1 + ln x.
D. y0 = 1 − ln x.
Câu 10. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất khơng thay đổi?
A. 102.424.000.
B. 102.016.000.
C. 102.016.000.
D. 102.423.000.
Câu 11. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 0.
B. 22016 .
C. e2016 .
D. 1.
2−n
bằng
Câu 12. Giá trị của giới hạn lim
n+1
A. 1.
B. 0.
C. 2.
D. −1.
Câu 13. Dãy số nào có giới hạn bằng 0?
n3 − 3n
A. un = n2 − 4n.
B. un =
.
n+1
2x + 1
Câu 14. Tính giới hạn lim
x→+∞ x + 1
1
A. .
B. 1.
2
!n
6
C. un =
.
5
!n
−2
D. un =
.
3
C. −1.
D. 2.
Trang 1/10 Mã đề 1
d = 60◦ . Đường chéo
Câu 15. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0
là
√
√
√
√
2a3 6
a3 6
4a3 6
3
B.
.
C.
.
D.
.
A. a 6.
3
3
3
Câu 16. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 + 2 sin 2x.
B. 1 − sin 2x.
C. −1 + 2 sin 2x.
D. −1 + sin x cos x.
Câu 17. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối√chóp S .ABMN là
√
√
√
2a3 3
4a3 3
5a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
2
3
3
3
Câu 18. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 216 triệu.
B. 210 triệu.
C. 212 triệu.
D. 220 triệu.
1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
n2 + 1
A. Dãy số un không có giới hạn khi n → +∞.
B. lim un = 1.
1
C. lim un = 0.
D. lim un = .
2
Câu 19. [3-1132d] Cho dãy số (un ) với un =
Câu 20. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
√ với đáy và S C = a 3. 3Thể
√ tích khối chóp S .ABC
√là
√
3
3
a 6
2a 6
a 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
9
4
2
1
2mx + 1
trên đoạn [2; 3] là − khi m nhận giá trị bằng
Câu 21. Giá trị lớn nhất của hàm số y =
m−x
3
A. 0.
B. 1.
C. −2.
D. −5.
Câu 22. Khối đa diện đều loại {5; 3} có số cạnh
A. 20.
B. 12.
C. 30.
D. 8.
Câu 23. [2]√Tìm m để giá trị nhỏ nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 2
A. m = ± 3.
B. m = ± 2.
C. m = ±3.
D. m = ±1.
Câu 24.
√ của |z|
√ [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn nhất
A. 3.
B. 2.
C. 1.
D. 5.
Câu 25. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
A. 2.
B. .
C. 1.
2
D.
ln 2
.
2
x2
Câu 26. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = 0.
B. M = e, m = .
C. M = e, m = 1.
D. M = , m = 0.
e
e
Câu 27.√Thể tích của tứ diện đều √
cạnh bằng a
3
3
a 2
a 2
A.
.
B.
.
6
12
√
a3 2
C.
.
2
√
a3 2
D.
.
4
Trang 2/10 Mã đề 1
Câu 28. [1-c] Giá trị của biểu thức
A. 4.
B. −4.
log7 16
log7 15 − log7
15
30
bằng
C. −2.
D. 2.
Câu 29. Cho hàm số y = x3 − 2x2 + x + 1. !Mệnh đề nào dưới đây đúng?
!
1
1
B. Hàm số nghịch biến trên khoảng −∞; .
A. Hàm số nghịch biến trên khoảng ; 1 .
3!
3
1
C. Hàm số đồng biến trên khoảng ; 1 .
D. Hàm số nghịch biến trên khoảng (1; +∞).
3
x−1 y z+1
= =
và
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. −x + 6y + 4z + 5 = 0.
B. 10x − 7y + 13z + 3 = 0.
C. 2x − y + 2z − 1 = 0.
D. 2x + y − z = 0.
Câu 30. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
Câu 31. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; 6, 5].
B. (−∞; 6, 5).
C. [6, 5; +∞).
D. (4; +∞).
Câu 32. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11
9
D.
.
A. 7.
B. 5.
C. .
2
2
Câu 33. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
A. 64.
B. 82.
C. 81.
D. 96.
8
x
1
có giá trị cực đại là
x
A. −2.
B. 2.
C. −1.
D. 1.
x
9
Câu 35. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. 1.
B. .
C. −1.
D. 2.
2
x+2
Câu 36. Tính lim
bằng?
x→2
x
A. 1.
B. 3.
C. 0.
D. 2.
Z 3
a
x
a
Câu 37. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
√
d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 16.
B. P = 28.
C. P = −2.
D. P = 4.
Câu 34. Hàm số y = x +
Câu 38. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
1
1
ab
A. 2
.
B. √
.
C. √
.
D. √
.
2
a +b
a2 + b2
2 a2 + b2
a2 + b2
Câu 39. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a =
.
B. log2 a = loga 2.
C. log2 a = − loga 2.
D. log2 a =
.
log2 a
loga 2
Câu 40. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng
√
√
√
a 2
a 2
A.
.
B. a 2.
C.
.
D. a 3.
2
3
Trang 3/10 Mã đề 1
0 0 0 0
0
Câu 41.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 6
a 3
a 6
A.
.
B.
.
C.
.
D.
.
7
2
2
3
Câu 42. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun z.
√
√
√
√
5 13
A. 2 13.
B. 26.
C. 2.
D.
.
13
Câu 43.
f (x), g(x) liên
đề nào sai? Z
Z Cho hàm số Z
Z tục trên R. Trong cácZmệnh đề sau, mệnh Z
f (x)g(x)dx =
A.
Z
C.
f (x)dx g(x)dx.
Z
Z
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Câu 44. Khối đa diện đều loại {3; 3} có số đỉnh
A. 4.
B. 5.
B.
Z
D.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Z
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
C. 3.
D. 2.
1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
√
√
18 11 − 29
2 11 − 3
C. Pmin =
. D. Pmin =
.
21
3
Câu 45. [12210d] Xét các số thực dương x, y thỏa mãn log3
Pmin của P = x√+ y.
√
9 11 + 19
9 11 − 19
A. Pmin =
. B. Pmin =
.
9
9
Câu 46. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. +∞.
B. 1.
C. 0.
D. 2.
Câu 47. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 24.
B. 3, 55.
C. 20.
D. 15, 36.
!x
1
là
Câu 48. [2] Tổng các nghiệm của phương trình 31−x = 2 +
9
A. log2 3.
B. − log3 2.
C. 1 − log2 3.
D. − log2 3.
Câu 49. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lăng trụ.
B. Hình lập phương.
C. Hình chóp.
D. Hình tam giác.
Câu 50. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √
√
a3 6
a3 3
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
24
24
8
48
Câu 51. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối lập phương.
B. Khối tứ diện đều.
C. Khối bát diện đều. D. Khối 12 mặt đều.
Câu 52. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị nhỏ nhất trên K.
C. f (x) liên tục trên K.
B. f (x) xác định trên K.
D. f (x) có giá trị lớn nhất trên K.
Câu 53. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −5.
B. −3.
C. −7.
D. Không tồn tại.
Câu 54. Khối đa diện đều loại {4; 3} có số đỉnh
A. 6.
B. 4.
D. 10.
C. 8.
Câu 55.
! định nào sau đây là sai?
Z Các khẳng
0
A.
f (x)dx = f (x).
Z
B.
f (x)dx = F(x) + C ⇒
Z
f (t)dt = F(t) + C.
Trang 4/10 Mã đề 1
Z
C.
k f (x)dx = k
Z
Z
f (x)dx, k là hằng số.
D.
f (x)dx = F(x) +C ⇒
Z
f (u)dx = F(u) +C.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
B. xy = e + 1.
C. xy0 = −ey − 1.
D. xy0 = −ey + 1.
Câu 56. [3-12217d] Cho hàm số y = ln
A. xy0 = ey − 1.
2
2
sin x
Câu 57. [3-c]
+ 2cos x lần
√ lượt là
√ Giá trị nhỏ nhất và giá trị lớn nhất của hàm√số f (x) = 2
A. 2 và 2 2.
B. 2 và 3.
C. 2 và 3.
D. 2 2 và 3.
1 3
Câu 58. Tìm tất cả các khoảng đồng biến của hàm số y = x − 2x2 + 3x − 1.
3
A. (1; +∞).
B. (−∞; 1) và (3; +∞). C. (−∞; 3).
D. (1; 3).
[ = 60◦ , S O
Câu 59. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ BC) bằng
√
√ với mặt đáy và S O = a. Khoảng cách từ A đến (S
√
a 57
2a 57
a 57
A.
.
B. a 57.
C.
.
D.
.
19
17
19
Câu 60. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
A. y = log π4 x.
B. y = log √2 x.
√
D. y = log 14 x.
C. y = loga x trong đó a = 3 − 2.
Câu 61. [1] Tập
! xác định của hàm số y! = log3 (2x + 1) là
!
1
1
1
A. −∞; − .
B.
; +∞ .
C. −∞; .
2
2
2
log2 240 log2 15
−
+ log2 1 bằng
Câu 62. [1-c] Giá trị biểu thức
log3,75 2 log60 2
A. 4.
B. 3.
C. 1.
!
1
D. − ; +∞ .
2
D. −8.
q
Câu 63. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 1].
B. m ∈ [0; 2].
C. m ∈ [−1; 0].
D. m ∈ [0; 4].
Câu 64. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
.
B. 18.
C. 12.
D. 27.
A.
2
Câu 65. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 3.
B. 0, 2.
C. 0, 5.
D. 0, 4.
3a
Câu 66. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng √
a 2
a
2a
a
A.
.
B. .
C.
.
D. .
3
3
3
4
3
2
Câu 67. Cho hàm số y = −x + 3x − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 2).
B. Hàm số đồng biến trên khoảng (0; 2).
C. Hàm số nghịch biến trên khoảng (0; 2).
D. Hàm số đồng biến trên khoảng (0; +∞).
Câu 68. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (1; +∞).
C. (−1; 1).
D. (−∞; −1).
Câu 69. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 14.
B. ln 10.
C. ln 4.
D. ln 12.
Trang 5/10 Mã đề 1
Câu 70. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = 0.
B. m = −3.
C. m = −2.
D. m = −1.
t
9
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
Câu 71. [4] Xét hàm số f (t) = t
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 0.
B. 2.
C. Vô số.
D. 1.
Câu 72. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 8 m.
B. 16 m.
C. 24 m.
D. 12 m.
Câu 73. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −2.
B. 4.
C. −4.
D. 2.
Câu 74. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
B. T = e + 1.
C. T = 4 + .
D. T = e + 3.
A. T = e + .
e
e
Câu 75. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 6%.
B. 0, 8%.
C. 0, 5%.
D. 0, 7%.
Câu 76. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
. Khi đó thể tích khối lăng trụ là
BC là
4
√
√
√
√
a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
24
12
36
6
Câu 77. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 1.
B. 3.
C. 2.
D. Vô số.
Câu 78. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. 1.
C. 3.
D. Vô nghiệm.
Câu 79. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P hoặc d ⊥ P.
B. d ⊥ P.
C. d nằm trên P.
D. d song song với (P).
x2 − 5x + 6
Câu 80. Tính giới hạn lim
x→2
x−2
A. 5.
B. 0.
C. 1.
D. −1.
Câu 81. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e2 .
B. 2e4 .
C. −e2 .
D. −2e2 .
Câu 82. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên khoảng (−2; 1).
B. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
C. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
Câu 83. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A.
.
B.
.
C. a3 .
D.
.
12
6
24
Trang 6/10 Mã đề 1
Câu 84. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
D. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
d = 30◦ , biết S BC là tam giác đều
Câu 85. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
26
16
13
9
2
Câu 86. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 5.
B. 2.
C. 4.
D. 3.
Câu 87. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B
√ C là
√
3
a 3
a3
a3 3
3
A.
.
B.
.
C. a .
D.
.
6
3
2
Câu 88. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 1200 cm2 .
B. 160 cm2 .
C. 160 cm2 .
D. 120 cm2 .
Câu 89. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là 1.
B. Phần thực là −1, phần ảo là 4.
C. Phần thực là 4, phần ảo là −1.
D. Phần thực là −1, phần ảo là −4.
!2x−1
!2−x
3
3
≤
là
Câu 90. Tập các số x thỏa mãn
5
5
A. (+∞; −∞).
B. (−∞; 1].
C. [3; +∞).
D. [1; +∞).
Câu 91. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều đúng.
B. Cả hai đều sai.
Câu 92. [2] Phương trình log4 (x + 1)2 + 2 = log √2
A. Vơ nghiệm.
B. 2 nghiệm.
C. Chỉ có (I) đúng.
D. Chỉ có (II) đúng.
√
4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
C. 3 nghiệm.
D. 1 nghiệm.
Câu 93. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một hoặc hai.
B. Khơng có.
C. Có một.
D. Có hai.
x+3
Câu 94. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 2.
B. 1.
C. Vô số.
D. 3.
Câu 95. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp tứ giác.
B. Một khối chóp tam giác, một khối chóp ngữ giác.
C. Hai khối chóp tứ giác.
D. Hai khối chóp tam giác.
Trang 7/10 Mã đề 1
Câu 96. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 2e.
B. 3.
C. .
e
D. 2e + 1.
Câu 97. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng
√
cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3
√
√
2 3
B.
.
C. 2.
D. 1.
A. 3.
3
Câu 98. Khẳng định nào sau đây đúng?
A. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ tứ giác đều là hình lập phương.
D. Hình lăng trụ đứng là hình lăng trụ đều.
Câu 99. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
x+1
Câu 100. Tính lim
bằng
x→−∞ 6x − 2
1
1
A. .
B. .
2
6
C.
1
.
3
D. 1.
Câu 101. √
Cho số phức z thỏa mãn |z√+ 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.
A. |z| = 10.
B. |z| = 17.
C. |z| = 17.
D. |z| = 10.
Câu 102. Giá trị của lim (3x2 − 2x + 1)
A. +∞.
x→1
B. 2.
C. 3.
D. 1.
Câu 103. Tứ diện đều thuộc loại
A. {3; 4}.
B. {5; 3}.
C. {3; 3}.
D. {4; 3}.
Câu 104. Khối đa diện đều loại {4; 3} có số mặt
A. 8.
B. 10.
C. 6.
D. 12.
Câu 105. Khối đa diện đều loại {5; 3} có số mặt
A. 20.
B. 8.
C. 30.
D. 12.
Câu 106. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 10 cạnh, 6 mặt.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
B. xy = −e − 1.
C. xy0 = ey − 1.
D. xy0 = ey + 1.
Câu 107. [3-12217d] Cho hàm số y = ln
A. xy0 = −ey + 1.
Câu 108. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α
aα
A. β = a β .
B. aαβ = (aα )β .
C. aα bα = (ab)α .
D. aα+β = aα .aβ .
a
Câu 109. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {0}.
B. D = R.
C. D = R \ {1}.
D. D = (0; +∞).
Câu 110. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 2020.
B. 13.
C. log2 13.
D. log2 2020.
Trang 8/10 Mã đề 1
Câu 111. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi
G la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
18
6
15
9
2
Câu 112. √
Tính mơ đun của số phức z√biết (1 + 2i)z = 3 + 4i.
√4
A. |z| = 5.
B. |z| = 2 5.
C. |z| = 5.
D. |z| = 5.
Câu 113. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n3 lần.
B. n2 lần.
C. 3n3 lần.
D. n lần.
1
Câu 114. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 luôn đồng biến trên
3
√
một đoạn có độ dài bằng 24.
A. m = 4.
B. −3 ≤ m ≤ 4.
C. m = −3, m = 4.
D. m = −3.
Câu 115. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 0, 8.
B. 7, 2.
C. 72.
D. −7, 2.
Câu 116. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng
(cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 16 tháng.
B. 17 tháng.
C. 15 tháng.
D. 18 tháng.
Câu 117.! Dãy số nào sau đây có !giới hạn là 0?
n
n
1
5
B.
.
A. − .
3
3
!n
5
C.
.
3
!n
4
D.
.
e
6
Câu 118. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2 f (x3 ) − √
. Tính
3x
+
1
Z 1
f (x)dx.
0
A. 2.
B. 4.
Câu 119. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.
5
Câu 120. Tính lim
n+3
A. 0.
B. 3.
C. −1.
D. 6.
C. Khối 20 mặt đều.
D. Khối bát diện đều.
C. 2.
D. 1.
3
2
Câu 121. Giá
√ trị cực đại của hàm số y√= x − 3x − 3x + 2 √
A. −3 − 4 2.
B. −3 + 4 2.
C. 3 − 4 2.
√
D. 3 + 4 2.
Câu 122. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng
√
√
√
a 3
2a 3
a 3
.
B. a 3.
C.
.
D.
.
A.
3
2
2
Câu 123. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. −2 + 2 ln 2.
B. e.
C. 1.
D. 4 − 2 ln 2.
Câu 124. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
Trang 9/10 Mã đề 1
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 1.
B. 3.
C. 4.
D. 2.
Câu 125. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18. √
A. 27.
B. 9.
C. 8.
D. 3 3.
Câu 126. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
Câu 127. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog
A. 25.
B. 5.
C.
√
a
√
5
bằng
5.
Câu 128. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 4}.
B. {5; 3}.
C. {4; 3}.
D.
1
.
5
D. {3; 3}.
Câu 129. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vô nghiệm.
B. 2.
C. 3.
D. 1.
log 2x
Câu 130. [3-1229d] Đạo hàm của hàm số y =
là
x2
1 − 2 log 2x
1
1 − 4 ln 2x
1 − 2 ln 2x
0
0
0
A. y0 =
.
C.
y
=
.
D.
y
=
.
.
B.
y
=
x3
x3 ln 10
2x3 ln 10
2x3 ln 10
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
2.
B
3. A
4.
5.
B
6. A
7.
B
8.
C
9.
B
B
10. A
11. A
D
13.
C
12.
D
14.
D
15. A
16.
C
17. A
18.
C
D
19.
20. A
21. A
23.
D
24.
25. A
27.
C
22.
B
26. A
B
28.
B
29. A
30.
B
31. A
32.
C
33.
C
34. A
35. A
36.
D
D
37.
D
38.
39.
D
40. A
41.
D
42.
43. A
D
44. A
45.
D
46.
47.
D
48.
49.
D
50. A
51.
C
C
D
52.
C
C
53.
D
54.
55.
D
56. A
57.
D
58.
B
59.
D
60.
B
61.
D
62.
63.
C
64.
65. A
67.
B
1
D
B
66.
C
68.
C
69. A
71.
70.
B
72.
C
B
74.
73. A
75.
D
77.
C
D
76.
B
78.
B
80.
79. A
81.
D
82.
C
C
84.
83. A
C
85.
87.
D
89.
86.
C
88.
C
90.
C
91.
D
D
92.
D
B
93. A
94.
95. A
96.
B
D
97.
C
98.
B
99.
C
100.
B
102.
B
101. A
C
103.
D
105.
109.
106.
C
107.
110.
112.
D
C
113. A
115.
C
116. A
118.
B
108. A
B
114.
C
104.
117.
B
D
B
119.
C
120. A
121.
B
122. A
123.
B
124.
125.
B
126.
D
128.
B
130.
B
D
127. A
129.
2
D