Tài liệu Pdf free LATEX
ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001
4(−3 + i) (3 − i)2
Câu 1. Cho số phức z thỏa mãn z =
+
. Mô-đun của số phức w = z − iz + 1 là
−i
√
√
√ 1 − 2i
√
A. |w| = 4 5.
B. |w| = 48.
C. |w| = 6 3.
D. |w| = 85.
!2016
!2018
1+i
1−i
Câu 2. Số phức z =
+
bằng
1−i
1+i
A. −2.
B. 2.
C. 1 + i.
D. 0.
Câu 3. Cho A = 1 + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ . Hỏi đâu là phương án đúng?
A. A = 2k.
B. A = 0.
C. A = 2ki.
D. A = 1.
Câu 4. Với mọi số phức z, ta có |z + 1|2 bằng
A. z2 + 2z + 1.
B. z + z + 1.
C. z · z + z + z + 1.
D. |z|2 + 2|z| + 1.
Câu 5. Cho hai số phức z1 = 1 + 2i và z2 = 2 − 3i. Khi đó số phức w = 3z1 − z2 + z1 z2 có phần ảo bằng
bao nhiêu?
A. −10.
B. 9.
C. −9.
D. 10.
Câu 6. Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = 8 − 17i. Khi đó hiệu phần thực và phần ảo
của z là
A. 7.
B. −3.
C. 3.
D. −7.
Câu 7. Cho cấp số nhân (un ) với u1 = 2 và công bội q = 12 . Giá trị của u3 bằng
A. 41 .
B. 3.
C. 72 .
D. 12 .
Câu 8. Trên khoảng (0; +∞), đạo hàm của hàm số y = log3 x là:
B. y′ = lnx3 .
C. y′ = − x ln1 3 .
A. y′ = x ln1 3 .
D. y′ = 1x .
Câu 9. Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn các số phức z thỏa mãn |z + 2i| = 1 là một
đường tròn. Tâm của đường trịn đó có tọa độ là
A. (0; 2).
B. (0; −2).
C. (−2; 0).
D. (2; 0).
Câu 10. Trong không gian Oxyz, cho điểm A(1; 2; 3). Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa
độ là
A. (1; 2; −3).
B. (−1; 2; 3).
C. (1; −2; 3).
D. (−1; −2; −3).
Câu 11. Trong không gian Oxyz, mặt phẳng (P) : x + y + z + 1 = 0 có một vectơ pháp tuyến là:
−
−
−
−
A. →
n3 = (1; 1; 1).
B. →
n4 = (1; 1; −1).
C. →
n2 = (1; −1; 1).
D. →
n1 = (−1; 1; 1).
Câu 12. Cho số phức z = 2 + 9i, phần thực của số phức z2 bằng
A. −77.
B. 85.
C. 4.
D. 36.
Câu 13. Cho phương trình bậc hai az2 + bz + c = 0 (với a, b, c ∈ R). Xét trên tập số phức, trong các
khẳng định sau, đâu là khẳng định sai?
−b
A. Phương trình đã cho có tổng hai nghiệm bằng
.
a
c
B. Phương trình đã cho có tích hai nghiệm bằng .
a
C. Phương trình đã cho ln có nghiệm.
D. Nếu ∆ = b2 − 4ac < 0 thì phương trình đã vơ nghiệm.
Câu 14. Gọi z1 , z2 là hai nghiệm phức của phương trình 2(1+i)z2 −4(2−i)z−5−3i = 0. TổngT = |z1 |2 +|z2 |2
bằng bao nhiêu?
√
13
13
A. T = 9.
B. T = 3.
C. T =
.
D. T = .
2
4
Trang 1/5 Mã đề 001
Câu 15. Biết x = 2 là một nghiệm của phương trình x2 + (m2 − 1)x − 8(m − 1) = 0 (m là tham số phức
2
có phần ảo âm).
√
√ Khi đó, mơ-đun của số phức w = m − 3m +√i bằng bao nhiêu ?
B. |w| = 5.
C. |w| = 73.
D. |w| = 5.
A. |w| = 3 5.
Câu 16. Biết z = 1 + i và z = 2 là một trong các nghiệm của phương trình z3 + az2 + bz + c = 0 (với
a, b ∈ R ). Khi đó tổng a + b + c bằng bao nhiêu?
A. 0.
B. 2.
C. −2.
D. 1.
Câu 17. Gọi M, N là hai điểm biểu diễn các số phức là nghiệm của phương trình z2 − 4z + 29 = 0. Độ
dài MN bằng bao nhiêu?
√
√
C. MN = 10.
D. MN = 10.
A. MN = 5.
B. MN = 2 5.
Câu 18. Biết z0 là nghiệm phức có phần ảo dương của phương trình z2 − 4z + 20 = 0. Trên mặt phẳng
tọa
độ, điểm nào dưới đây là điểm biểu diễn của số phức w = (1 + i)z0 − 2z0 ?
A. M4 (6; −14).
B. M3 (−2; 10).
C. M2 (2; −10).
D. M1 (6; 14).
z
Câu 19. Cho các số phức z, w khác 0 được biểu diễn bởi hai điểm A, B trong mặt phẳng Oxy. Nếu là
w
số thuần ảo thì mệnh đề nào sau đây đúng?
A. Tam giác OAB là tam giác đều.
B. Tam giác OAB là tam giác vuông.
C. Tam giác OAB là tam giác cân.
D. Tam giác OAB là tam giác nhọn.
Câu 20. Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện
w = (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5.
A. (x − 5)2 + (y − 4)2 = 125.
B. (x + 1)2 + (y − 2)2 = 125.
C. x = 2.
D. (x − 1)2 + (y − 4)2 = 125.
Câu 21. Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z|. Diện tích hình phẳng
(H) là
A. 2π.
B. 3π.
C. 4π.
D. π.
Câu 22. Cho z1 , z2 là hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = 1. Tính giá trị biểu thức
P = |z1 + z2 |.
√
√
√
√
3
2
B. P =
.
C. P =
.
D. P = 3.
A. P = 2.
2
2
Câu 23. Cho số phức z thỏa mãn (z + 1) (z − 2i) là số thuần ảo. Tập hợp các điểm biểu diễn số phức z là
một hình trịn có diện tích bằng
5π
5π
A. .
B. 25π.
C. .
D. 5π.
2
4
−2 − 3i
Câu 24. Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện
z + 1
= 1.
3
−
2i
√
A. max |z| = 1.
B. max |z| = 2.
C. max |z| = 3.
D. max |z| = 2.
z+i+1
Câu 25. Tìm tập hợp các điểm M biểu diễn số phức z sao cho w =
là số thuần ảo?
z + z + 2i
A. Một đường tròn.
B. Một Elip.
C. Một Parabol.
D. Một đường thẳng.
Câu 26. Cho số phức z thỏa mãn |i + 2z| = |z − 3i|. Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3
là một đường thẳng có phương trình là
A. x + y − 8 = 0.
B. x − y + 4 = 0.
C. x − y + 8 = 0.
D. x + y − 5 = 0.
Câu 27. Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z|. Diện tích hình phẳng
(H) là
A. 4π.
B. π.
C. 3π.
D. 2π.
Câu 28. Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là
hình trịn có diện tích bằng bao nhiêu
A. 4π.
B. 3π.
C. π.
D. 2π.
Trang 2/5 Mã đề 001
Câu 29. Cho z1 , z2 là hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = 1. Tính giá trị biểu thức
P = |z1 + z√2 |.
√
√
√
2
3
.
B. P =
.
C. P = 2.
A. P =
D. P = 3.
2
2
Câu 30. Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10. Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt
là
A. 10 và 4.
B. 5 và 3.
C. 5 và 4.
D. 4 và 3.
Câu 31. GọiM là điểm biểu diễn số phức z = 3 − 4i và M ′ là điểm biểu diễn của số phức z′ =
trong mặt phẳng tọa độ Oxy. Tính diện tích tam giác OMM ′ .
25
15
25
B. S = .
C. S = .
A. S = .
2
4
4
D. S =
1+i
z
2
15
.
2
Câu 32. Gọi z1 và z2 là các nghiệm của phương trình z2 − 2z + 10 = 0. Gọi M, N, P lần lượt là các điểm
biểu diễn của
√ z1 , z2 và số phức
√ w = x + iy trên mặt phẳng phức. Để
√ tam giác MNP đều
√ là số phức k là
A. w = √
27 − i hoặcw = 27√+ i.
B. w = 1 + √27i hoặcw = 1 − √ 27i.
C. w = − 27 − i hoặcw = − 27 + i.
D. w = 1 + 27 hoặcw = 1 − 27.
Câu 33. (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = 8 + 6i và |z1 − z2 | = 2. Tìm giá
trị lớn nhất của biểu
√2 |.
√
√
√ thức P = |z1 | + |z
B. P = 2 26.
C. P = 4 6.
D. P = 5 + 3 5.
A. P = 34 + 3 2.
√
2
Câu 34. Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = 0 và |z1 | = |z2 | = |z3 | =
. Giá trị lớn nhất của biểu thức
2
P = |z1 + z2 | + 2|z2 + z3 | + 3|z3 + z1 | bằng bao nhiêu?
√
√
√
√
4 5
3 6
10 2
7 2
A. Pmax =
.
B. Pmax =
.
C. Pmax =
.
D. Pmax =
.
5
2
3
3
Câu 35. Gọi z1 ; z2 là hai nghiệm của phương trình z2 − z + 2 = 0.Phần thực của số phức
[(i − z1 )(i − z2 )]2017 bằng bao nhiêu?
A. −22016 .
B. 21008 .
C. 22016 .
D. −21008 .
Câu 36. (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z|.
Đặt P = 8(b2 − a2 ) − 12. Mệnh đề nào dưới đây đúng?
2
2
B. P = (|z| − 4)2 .
C. P = (|z| − 2)2 .
D. P = |z|2 − 4 .
A. P = |z|2 − 2 .
Câu 37. Cho số phức z thỏa mãn |z| + z = 0. Mệnh đề nào đúng?
A. z là một số thực không dương.
B. Phần thực của z là số âm.
C. |z| = 1.
D. z là số thuần ảo.
Câu 38. Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ nhất của biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2
A. 9.
B. 4.
C. 18.
D. 8.
Câu 39. Cho hàm số y = f (x) liên tục trên R và lim y = 3. Trong các khẳng định sau, khẳng định nào
x→+∞
luôn đúng?
A. Đường thẳng x = 3 là một tiệm cận ngang của đồ thị hàm số y = f (x).
B. Đường thẳng x = 3 là một tiệm cận đứng của đồ thị hàm số y = f (x).
C. Đường thẳng y = 3 là một tiệm cận đứng của đồ thị hàm số y = f (x).
D. Đường thẳng y = 3 là một tiệm cận ngang của đồ thị hàm số y = f (x).
Câu 40. Đồ thị hàm số y = −x3 + 3x2 − 3x + 2 có bao nhiêu điểm cực trị?
A. 0.
B. 2.
C. 1.
D. 3.
Câu 41. Cho hàm số y = f (x) có bảng biến thiên như sau:
Trang 3/5 Mã đề 001
x
−∞
y′
+∞
−2
−
−
+∞
−2
y
−2
−∞
Đồ thị hàm số y = f (x) có bao nhiêu đường tiệm cận đứng và tiệm cận ngang?
A. 3.
B. 1.
Câu 42. Cho hàm số y =
A. 3.
C. 2.
D. 4.
x+1
. Tìm giá trị lớn nhất của hàm số trên đoạn [−1; 2].
3−x
B. −1.
C. 0.
D. 2.
Câu 43. Tìm giá trị nhỏ nhất của hàm số f (x) = 2x3 − 3x2 − 12x + 10 trên đoạn [−3; 3].
A. 17.
B. 1.
C. −10.
D. −35.
Câu 44. Khối đa diện nào trong các khối đa diện sau có tính chất: “Mỗi mặt của khối đa diện là một tam
giác đều và mỗi đỉnh của nó là đỉnh chung của đúng ba mặt. ”?
A. Khối mười hai mặt đều.
B. Khối lập phương.
C. Khối tứ diện đều.
D. Khối bát diện đều.
Câu 45. Cho khối chóp S .ABC có đáy là tam giác vng cân tại A, AB = 2, S A vng góc với đáy và
S A = 3 (tham khảo hình bên). Thể tích khối chóp đã cho bằng
A. 6.
B. 4.
C. 12.
D. 2.
Câu 46. Trong không gian 0xyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 4y − 6z + 1 = 0. Tâm của (S ) có
tọa độ là
A. (2; 4; 6).
B. (1; 2; 3).
C. (−2; −4; −6).
D. (−1; −2; −3).
Câu 47. Trong không gian Oxyz, cho hai điểm M(1; −1; −1) và N(5; 5; 1). Đường thẳng MN có phương
trình là:
Câu 48. Có bao nhiêu số ngun x thỏa mãn log3
A. 184.
Câu 49. Nếu
A. 0.
B. 193.
R2
0
f (x)dx = 4 thì
x2 −16
343
< log7
C. 92.
x2 −16
?
27
D. 186.
R 2 h1
B. 8.
0
i
f
(x)
−
2
dx bằng
2
C. −2.
D. 6.
Câu 50. Có bao nhiêu cặp số nguyên (x; y) thỏa mãn
log3 x2 + y2 + x + log2 x2 + y2 ≤ log3 x + log2 x2 + y2 + 24x ?
A. 48.
B. 49.
C. 90.
D. 89.
Trang 4/5 Mã đề 001
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 5/5 Mã đề 001