Tài liệu Pdf miễn phí LATEX
ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 4 trang)
Mã đề 001
Câu 1. Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − 5 = 0. Bán kính R
của (S) bằng
√ bao nhiêu?
√
B. R = 29.
C. R = 9.
D. R = 3.
A. R = 21.
ax + b
Câu 2. Cho hàm số y =
có đồ thị như hình vẽ bên. Kết luận nào sau đây là sai?
cx + d
A. bc > 0 .
B. ad > 0 .
C. ac < 0.
D. ab < 0 .
Câu 3. Khối trụ có bán kính đáy bằng chiều cao và bằng Rthì thể tích của nó bằng
A. 6πR3 .
B. 2πR3 .
C. 4πR3 .
D. πR3 .
Câu 4. Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s). Tính
qng đường S mà chất điểm đó đi được sau 2 giây kể từ lúc bắt đầu chuyển động?
A. S = 20 (m).
B. S = 12 (m).
C. S = 24 (m).
D. S = 28 (m).
1
là đúng?
x
B. Hàm số đồng biến trên (−∞; 0) ∪ (0; +∞).
D. Hàm số nghịch biến trên (0; +∞).
Câu 5. Kết luận nào sau đây về tính đơn điệu của hàm số y =
A. Hàm số đồng biến trên R.
C. Hàm số nghịch biến trên R.
Câu 6. Tìm tất cả các giá trị của tham số m để đường thẳng y = x + m cắt đồ thị hàm số y =
hai điểm phân biệt thuộc hai nửa mặt phẳng khác nhau bờ là trục hoành?
3
B. ∀m ∈ R .
C. 1 < m , 4.
A. m < .
2
Câu 7. Số nghiệm của phương trình 9 x + 5.3 x − 6 = 0 là
A. 2.
B. 4.
C. 0.
3 + 2x
tại
x+1
D. −4 < m < 1.
D. 1.
Câu 8. Cho hìnhqchóp đều S .ABCcó cạnh đáy bằng a và cạnh bên bằng b. Thể tích của khối chóp là:
√
√ 2
a2 b2 − 3a2
3a b
A. VS .ABC =
.
B. VS .ABC =
.
12
12
√
√
a2 3b2 − a2
3ab2
C. VS .ABC =
.
D. VS .ABC =
.
12
12
Câu 9. Cho hình trụ có hai đáy là hai đường trịn (O; r) và (O′ ; r). Một hình nón có đỉnh O và có đáy là
hình trịn (O′ ; r). Mặt xung quanh của hình nón chia khối trụ thành hai phần. Gọi V1 là thể tích của khối
V1
nón, V2 là thể tích của phần cịn lại. Tính tỉ số .
V2
V1
V1 1
V1 1
V1 1
A.
= 1.
B.
= .
C.
= .
D.
= .
V2
V2 3
V2 6
V2 2
√ x
Câu 10. Tìm nghiệm của phương trình 2 x = ( 3) .
A. x = 0.
B. x = −1.
C. x = 1.
D. x = 2.
√
Câu 11. Cho hàm số y = x− 2017 . Mệnh đề nào dưới đây là đúng về đường tiệm cận của đồ thị hàm
số?
A. Có một tiệm cận ngang và một tiệm cận đứng. .
B. Khơng có tiệm cận ngang và có một tiệm cận đứng.
C. Khơng có tiệm cận.
D. Có một tiệm cận ngang và khơng có tiệm cận đứng.
Trang 1/4 Mã đề 001
Câu 12. Cho hình thang cân có độ dài đáy nhỏ và hai cạnh bên đều bằng 1 mét. Khi đó hình thang đã
cho có diện tích lớn nhất bằng?
√
√
√
3 3 2
3 3 2
2
2
B. 1 (m ).
C.
(m ).
D.
(m ).
A. 3 3(m ).
2
4
R
Câu 13. Tính nguyên hàm cos 3xdx.
1
1
A. sin 3x + C.
B. −3 sin 3x + C.
C. − sin 3x + C.
D. 3 sin 3x + C.
3
3
√
Câu 14. Tìm tất cả các khoảng đồng biến của hàm số y = x − 2 x + 2017.
1
1
B. (1; +∞) .
C. (0; 1).
D. ( ; +∞).
A. (0; ).
4
4
Câu 15. Cho hàm số y = f (x) xác định và liên tục trên mỗi nửa khoảng (−∞; −2] và [2; +∞), có bảng
biến thiên như hình bên. Tìm tập hợp các giá trị của m để phương trình f (x) = m có hai nghiệm phân
biệt.
S
S
7
7
7
A. [ ; 2] [22; +∞).
B. ( ; 2] [22; +∞) . C. ( ; +∞)
D. [22; +∞).
4
4
4
.
Câu 16. Giá trị nhỏ nhất của hàm số y = 2x + cos xtrên đoạn [0; 1] bằng?
A. 0.
B. 1.
C. −1.
D. π.
√
x
Câu 17. Đồ thị hàm số y = ( 3 − 1) có dạng nào trong các hình H1, H2, H3, H4 sau đây?
A. (H4).
B. (H3).
C. (H1).
D. (H2).
Câu 18. Trong không gian với hệ tọa độ Oxyz, cho M(2; 3; −1). Tìm tọa độ điểm M ′ đối xứng với M qua
mặt phẳng Oxz?
A. M ′ (2; 3; 1).
B. M ′ (2; −3; −1).
C. M ′ (−2; 3; 1).
D. M ′ (−2; −3; −1).
Câu 19. Tìm tất cả các giá trị của tham số m để hàm số y = (1 − m)x4 + 3x2 chỉ có cực tiểu mà khơng có
cực đại
A. m < 1.
B. m > 1.
C. m ≥ 1.
D. m ≤ 1.
Câu 20. Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s).
Tính quãng đường S mà chất điểm đó đi được sau 2 giây kể từ lúc bắt đầu chuyển động.
A. S = 20 (m).
B. S = 28 (m).
C. S = 24 (m).
D. S = 12 (m).
Câu 21. Tìm tất cả các giá trị của tham số m để giá trị lớn nhất của hàm số y = −x2 + 2mx − 1 − 2m trên
đoạn [−1; 2] nhỏ hơn 2.
7
C. m ≥ 0.
D. m ∈ (0; 2).
A. m ∈ (−1; 2).
B. −1 < m < .
2
Câu 22. Trong không gian với hệ tọa độ Oxyz cho điểm A(5; 5; 2),mặt phẳng (P):z − 2 = 0, mặt cầu
(S )có tâm I(3; 4; 6) và bán kính R = 5.Viết phương trình đường thẳng đi qua A, nằm trong (P) và cắt (S)
theo dây cung dài nhất.
A. x = 5 + 2ty = 5 + tz = 2 − 4t.
B. x = 3 + 2ty = 4 + tz = 6.
C. x = 5 + ty = 5 + 2tz = 2.
D. x = 5 + 2ty = 5 + tz = 2.
Câu 23. Cho hình chóp đều S .ABCcó cạnh đáy bằng a và cạnh bên bằng b. Thể tích của khối chóp
là:
√
√ 2
3ab
a2 3b2 − a2
A. VS .ABC =
.
B. VS .ABC =
.
12
q 12 √
√ 2
a2 b2 − 3a2
3a b
C. VS .ABC =
.
D. VS .ABC =
.
12
12
Câu 24. Đồ thị hàm số nào sau đây có vơ số đường tiệm cận đứng?
3x + 1
A. y = tan x.
B. y =
.
x−1
3
2
C. y = x − 2x + 3x + 2.
D. y = sin x .
Trang 2/4 Mã đề 001
Câu 25. Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1). Tìm tọa độ điểm E thuộc
trục tung sao cho tam giác MNEcân tại E.
A. (0; 6; 0).
B. (0; −2; 0).
C. (−2; 0; 0).
D. (0; 2; 0).
Câu 26. Một thùng đựng nước có dạng hình trụ có chiều cao h và bán kính đáy√bằng R. Khi đặt thùng
R 3
(mặt nước thấp hơn
nước nằm ngang như hình 1 thì khoảng cách từ trục hình trụ tới mặt nước bằng
2
trục của hình trụ). Khi đặt thùng nước thẳng đứng như hình 2 thì chiều cao của mực nước trong thùng là
h1
h1 . Tính tỉ số
√
√
√
√ h
π− 3
2π − 3 3
3
2π − 3
.
B.
.
C.
.
D.
.
A.
12
6
12
4
Câu 27. Một sinh viên A trong thời gian 4 năm học đại học đã vay ngân hàng mỗi năm 10 triệu đồng
với lãi suất 3
A. 46.538667 đồng.
B. 45.188.656 đồng.
C. 48.621.980 đồng.
D. 43.091.358 đồng.
Câu 28. Tính diện tích hình phẳng giới hạn bởi đồ thị (C) của hàm số y = x2 − 4x + 5, tiếp tuyến tại
A(1; 2) và tiếp tuyến tại B(4; 5) của đồ thị (C).
3
7
5
9
B. .
C. .
D. .
A. .
4
4
4
4
Câu 29. Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCD với A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0), D(1;
Độ dài đường cao AH của tứ diện ABCD là:
A. 9 .
B. 5 .
C. 7 .
D. 6.
√
Câu 30. Cho hình chóp S .ABC có S A⊥(ABC), S A = a 3. Tam giác ABC vuông cân tại B, AC = 2a.
Thể tích √
khối chóp S .ABC là
√
√
3
3
3
√
a
a
3
3
2a 3
.
B. a3 3 .
.
D.
.
C.
A.
3
6
3
Câu 31. Cho tam giác ABC vuông tại A, AB = a, BC = 2a. Tính thể tích khối nón nhận được khi quay
tam giác √
ABC quanh trục AB.
3
√
πa 3
D. 3πa3 .
A.
.
B. πa3 .
C. πa3 3.
3
Câu 32. Tính thể tích khối trịn xoay khi quay xung quanh trục hồnh hình phẳng giới hạn bởi các đường
1
y = , x = 1, x = 2 và trục hoành.
x
π
3π
π
3π
A. V = .
B. V =
.
C. V = .
D. V =
.
2
2
3
5
√3
a2 b
Câu 33. Biết loga b = 2, loga c = 3 với a, b, c > 0; a , 1. Khi đó giá trị của loga (
) bằng
c
1
2
A. − .
B. 6.
C. .
D. 5.
3
3
Câu 34. Bác An đem gửi tổng số tiền 320 triệu đồng ở một ngân hàng A theo hình thức lãi kép, ở hai
loại kỳ hạn khác nhau. Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, 1
A. 36080254 đồng.
B. 36080253 đồng.
C. 36080255 đồng.
D. 36080251 đồng.
π
R2
Câu 35. Biết sin 2xdx = ea . Khi đó giá trị a là:
0
A. − ln 2.
B. ln 2.
C. 0.
D. 1.
Câu 36. Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD là hình chữ nhật,AB = a; AD = 2a;
′
AA′ =√2a. Gọi α là số đo góc giữa
√ hai đường thẳng AC và DB . Tính giá trị cos α.√
5
3
1
3
A.
.
B.
.
C. .
D.
.
5
2
2
4
Trang 3/4 Mã đề 001
Câu 37. Tính đạo hàm của hàm số y = 5 x+cos3x
A. y′ = 5 x+cos3x ln 5 .
C. y′ = (1 + 3 sin 3x)5 x+cos3x ln 5 .
B. y′ = (1 − sin 3x)5 x+cos3x ln 5 .
D. y′ = (1 − 3 sin 3x)5 x+cos3x ln 5.
Câu 38. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh
√ a. Hai mặt phẳng (S AB), (S AC) cùng
2
vng góc
là a 3. Tính thể tích khối
√ với mặt phẳng (ABC),
√diện tích tam giác S BC3 √
√ chóp S .ABC.
a3 15
a3 15
a 5
a3 15
A.
.
B.
.
C.
.
D.
.
16
4
3
8
Câu 39. Hàm số nào trong các hàm số sau có đồ thị như hình vẽ bên.
A. y = −x4 + 2x2 + 8. B. y = −2x4 + 4x2 .
C. y = −x4 + 2x2 .
D. y = x3 − 3x2
.
Câu 40. Một hình trụ (T ) có diện tích xung quanh bằng 4π và thiết diện qua trục của hình trụ này là một
hình vng. Diện tích tồn phần của (T ) là
A. 8π.
B. 10π.
C. 12π.
D. 6π.
√
Câu 41. Tính đạo hàm của hàm số y = log4 x2 − 1
x
x
1
x
. C. y′ = 2
.
D. y′ =
.
A. y′ = √
. B. y′ = 2
(x − 1)log4 e
(x − 1) ln 4
2(x2 − 1) ln 4
x2 − 1 ln 4
Câu 42. Cho m = log2 3; n = log5 2. Tính log2 2250 theo m, n.
3mn + n + 4
2mn + n + 3
A. log2 2250 =
.
B. log2 2250 =
.
n
n
2mn + 2n + 3
2mn + n + 2
.
D. log2 2250 =
.
C. log2 2250 =
n
m
Câu 43. Tính thể tích của khối trịn xoay tạo thành khi cho hình phẳng giới hạn bởi đồ thị hàm y = x2 ,
trục Ox và hai đường thẳng x = −1; x = 2 quay quanh trục Ox.
33π
32π
31π
A. 6π.
B.
.
C.
.
D.
.
5
5
5
Câu 44. Cho hàm số y = x2 − x + m có đồ thị là (C). Tìm tất cả các giá trị của tham số m để tiếp tuyến
của đồ thị (C) tại giao điểm của (C) với trục Oy đi qua điểm B(1; 2).
A. m = 2.
B. m = 4.
C. m = 1.
D. m = 3.
Câu 45. Tìm tất cả các giá trị của tham số m để hàm số y = mx3 + mx2 − x + 2 nghịch biến trên R.
A. −3 ≤ m ≤ 0.
B. −4 ≤ m ≤ −1.
C. m > −2.
D. m < 0.
Câu 46. Trong không gian với hệ trục tọa độ Oxyz, gọi (P)
√ là mặt phẳng đi qua hai điểm A(1; 1; 1), B(0; 1; 2)
3 2
. Giả sử phương trình mặt phẳng (P) có dạng
và khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) bằng
2
ax + by + cz + 2 = 0. Tính giá trị abc.
A. 4.
B. −4.
C. −2.
D. 2.
3x
Câu 47. Tìm tất cả các giá trị của tham số mđể đồ thị hàm số y =
cắt đường thẳng y = x + m tại
x−2
7
hai điểm phân biệt A, B sao cho tam giác OAB nhận G(1; ) làm trọng tâm.
3
A. Không tồn tại m.
B. m = 2.
C. m = −2.
D. m = 1.
R
ax + b 2x
Câu 48. Biết a, b ∈ Z sao cho (x + 1)e2x dx = (
)e + C. Khi đó giá trị a + b là:
4
A. 3.
B. 1.
C. 4.
D. 2.
Câu 49. Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) và tiếp
xúc với mặt phẳng (P) : 2x + y − 2z + 1 = 0.
A. (x − 1)2 + (y − 2)2 + (z − 4)2 = 3.
B. (x − 1)2 + (y + 2)2 + (z − 4)2 = 1.
C. (x − 1)2 + (y − 2)2 + (z − 4)2 = 2.
D. (x − 1)2 + (y − 2)2 + (z − 4)2 = 1.
√
2x − x2 + 3
có số đường tiệm cận đứng là:
Câu 50. Đồ thị hàm số y =
x2 − 1
A. 3.
B. 1.
C. 2.
D. 0.
- - - - - - - - - - HẾT- - - - - - - - - Trang 4/4 Mã đề 001