Tài liệu Pdf miễn phí LATEX
ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 4 trang)
Mã đề 001
Câu 1. Kết quả nào đúng?
R
R
sin3 x
2
2
2
A. sin x cos x = −cos x. sin x + C.
B. sin x cos x = −
+ C.
3
3
R
R
sin x
+ C.
D. sin2 x cos x = cos2 x. sin x + C.
C. sin2 x cos x =
3
Câu 2. Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − 2 = 0, mặt cầu (S )có
tâm I(3; 4; 6) và bán kính R = 5.Viết phương trình đường thẳng đi qua A, nằm trong (P) và cắt (S) theo
dây cung dài nhất?
A. x = 5 + 2ty = 5 + tz = 2.
B. x = 5 + ty = 5 + 2tz = 2.
C. x = 3 + 2ty = 4 + tz = 6.
D. x = 5 + 2ty = 5 + tz = 2 − 4t.
p
Câu 3. Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) 1 − y. Kết luận nào
sau đây là sai?
A. Nếux = 1 thì y = −3.
B. Nếu 0 < x < π thì y > 1 − 4π2 .
C. Nếux > 2 thìy < −15.
D. Nếu 0 < x < 1 thì y < −3.
Câu R4. Cơng thức nào sai?
A. R a x = a x . ln a + C.
C. e x = e x + C.
R
B. R sin x = − cos x + C.
D. cos x = sin x + C.
Câu 5. Tìm tất cả các giá trị của tham số m để hàm số y = (1 − m)x4 + 3x2 chỉ có cực tiểu mà khơng có
cực đại
A. m > 1.
B. m ≥ 1.
C. m ≤ 1.
D. m < 1.
√
Câu 6.
lăng trụ đều ABC.A√′ B′C ′ có đáy bằng a, AA′ = 4 3a. Thể tích khối lăng trụ đã cho là:
√ Cho
3
B. 8 3a3 .
C. a3 .
D. 3a3 .
A. 3a .
Câu 7. Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s). Tính
qng đường S mà chất điểm đó đi được sau 2 giây kể từ lúc bắt đầu chuyển động?
A. S = 28 (m).
B. S = 20 (m).
C. S = 24 (m).
D. S = 12 (m).
1
Câu 8. Kết luận nào sau đây về tính đơn điệu của hàm số y = là đúng?
x
A. Hàm số đồng biến trên (−∞; 0) ∪ (0; +∞).
B. Hàm số đồng biến trên R.
C. Hàm số nghịch biến trên (0; +∞).
D. Hàm số nghịch biến trên R.
R
Câu R9. Biết f (u)du = F(u) + C Mệnh đề nào dưới đây
R đúng?
A. f (2x − 1)dx = F(2x − 1) + C.
B. f (2x − 1)dx = 2F(x) − 1 + C.
R
R
1
C. f (2x − 1)dx = F(2x − 1) + C .
D. f (2x − 1)dx = 2F(2x − 1) + C.
2
√
d = 1200 . Gọi
Câu 10. Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a 5 và BAC
K, I lần√lượt là trung điểm của cạnh CC1 , BB1 . Tính khoảng
√ cách từ điểm I đến mặt
√ phẳng (A1 BK).
√
a 15
a 5
a 5
A.
.
B. a 15.
C.
.
D.
.
3
6
3
R
Câu 11. Tính nguyên hàm cos 3xdx.
1
1
A. − sin 3x + C.
B. −3 sin 3x + C.
C. sin 3x + C.
D. 3 sin 3x + C.
3
3
√ sin 2x
trên R bằng?
Câu 12. Giá trị lớn nhất của hàm
√ số y = ( π)
A. 1.
B. π.
C. 0.
D. π.
Trang 1/4 Mã đề 001
Câu 13. Đường cong trong hình bên là đồ thị của hàm số nào?
A. y = x4 + 2x2 + 1 .
B. y = x4 + 1.
C. y = −x4 + 2x2 + 1 .
D. y = −x4 + 1 .
Câu 14. Cho hàm số y = f (x) xác định và liên tục trên mỗi nửa khoảng (−∞; −2] và [2; +∞), có bảng
biến thiên như hình bên. Tìm tập hợp các giá trị của m để phương trình f (x) = m có hai nghiệm phân
biệt.
S
S
7
7
7
C. [22; +∞).
D. [ ; 2] [22; +∞).
A. ( ; 2] [22; +∞) . B. ( ; +∞)
4
4
4
.
Câu 15. Cho hàm số y = x3 + 3x2 − 9x − 2017. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (−3; 1).
B. Hàm số đồng biến trên khoảng (−3; 1).
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số nghịch biến trên khoảng (−∞; −3).
Câu 16. Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh bằng a. Tính thể tích khối chóp D.ABC ′ D′ .
a3
a3
a3
a3
B. .
C. .
D. .
A. .
4
9
3
6
2
2
2
Câu 17. Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x + y + z − 4z − 5 = 0. Bán kính R
của (S) bằng
√ bao nhiêu?
√
A. R = 21.
B. R = 3.
C. R = 29.
D. R = 9.
Câu 18. Tính tổng tất cả các nghiệm của phương trình 6.22x − 13.6 x + 6.32x = 0
13
.
C. −6.
D. 1.
A. 0.
B.
6
Câu 19. Tập tất cả các giá trị của tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm
số y = 3x2 + log3 x + m là:
A. S = (−∞; ln3).
B. S = [ -ln3; +∞).
C. S = (−∞; 2).
D. S = [ 0; +∞).
Câu 20. Với giá trị nào của tham số m thì tiếp tuyến có hệ số góc nhỏ nhất của đồ thị hàm số y =
x3 + 6x2 + mx − 2 đi qua điểm (11;1)?
A. m = −15.
B. m = −2.
C. m = 3.
D. m = 13.
Câu 21. Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1). Tìm tọa độ điểm E thuộc
trục tung sao cho tam giác MNEcân tại E.
A. (0; −2; 0).
B. (0; 2; 0).
C. (0; 6; 0).
D. (−2; 0; 0).
Câu 22. Bất đẳng thức nào sau đây là đúng?
−e
A. 3√
> 2−e .
√
π
e
C. ( 3 + 1) > ( 3 + 1) .
√
√
e
π
B. ( 3 − 1) < ( 3 − 1) .
D. 3π < 2π .
Câu 23. Phương trình tiếp tuyến với đồ thị hàm số y = log5 x tại điểm có hồnh độ x = 5 là:
x
1
x
1
−
.
B. y =
−1+
.
A. y =
5 ln 5 ln 5
5 ln 5
ln 5
x
x
1
C. y =
+ 1.
D. y =
+1−
.
5 ln 5
5 ln 5
ln 5
1
Câu 24. Kết luận nào sau đây về tính đơn điệu của hàm số y = là đúng?
x
A. Hàm số đồng biến trên R.
B. Hàm số nghịch biến trên (0; +∞).
C. Hàm số đồng biến trên (−∞; 0) ∪ (0; +∞).
D. Hàm số nghịch biến trên R.
R1 √3
7x + 1dx
Câu 25. Tính I =
0
60
21
45
20
A. I = .
B. I = .
C. I = .
D. I = .
28
8
28
7
2x
x
2x
Câu 26. Tính tổng tất cả các nghiệm của phương trình 6.2 − 13.6 + 6.3 = 0
13
A. 1.
B. 0.
C. .
D. −6.
6
Câu 27. Đồ thị hàm số nào sau đây có 3 điểm cực trị:
A. y = x4 + 2x2 − 1.
B. y = −x4 − 2x2 − 1. C. y = 2x4 + 4x2 + 1. D. y = x4 − 2x2 − 1.
Trang 2/4 Mã đề 001
(2 ln x + 3)3
là :
Câu 28. Họ nguyên hàm của hàm số f (x) =
x
4
2 ln x + 3
(2 ln x + 3)
(2 ln x + 3)4
(2 ln x + 3)2
A.
+ C.
B.
+ C.
C.
+ C.
D.
+ C.
8
8
2
2
3 2
1
m
3
Câu 29. Xác định tập tất cả các giá trị của tham số m để phương trình
2x + x − 3x −
=
− 1
2
2
2
có 4 nghiệm phân biệt.
3
19
3
19
A. S = (−2; − ) ∪ ( ; 6).
B. S = (−2; − ) ∪ ( ; 7).
4
4
4
4
3
19
C. S = (−3; −1) ∪ (1; 2).
D. S = (−5; − ) ∪ ( ; 6).
4
4
Câu 30. Đồ thị như hình bên là đồ thị của hàm số nào?
2x + 1
−2x + 3
2x + 2
2x − 1
A. y =
.
B. y =
.
C. y =
.
D. y =
.
x+1
1−x
x+1
x−1
x3
Câu 31. Tìm tất cả các giá trị của tham số m để hàm số y = (m + 2) − (m + 2)x2 + (m − 8)x + m5 nghịch
3
biến trên R.
A. m ≤ −2.
B. m < −3.
C. m ≥ −8.
D. m ≤ 0.
1 3 2
x −2x +3x+1
. Mệnh đề nào dưới đây đúng?
Câu 32. Cho hàm số f (x) = e 3
A. Hàm số đồng biến trên khoảng (−∞; 1) và (3; +∞).
B. Hàm số đồng biến trên khoảng(−∞; 1) và nghịch biến trên khoảng(3; +∞).
C. Hàm số nghịch biến trên khoảng (−∞; 1) và (3; +∞).
D. Hàm số nghịch biến trên khoảng(−∞; 1) và đồng biến trên khoảng(3; +∞).
Câu 33. Cho log2 b = 3, log2 c = −4. Hãy tính log2 (b2 c)
A. 8.
B. 6.
C. 2.
D. 4.
Câu 34. Cho tứ diện DABC, tam giác ABC vuông tại B, DA vng góc với mặt phẳng (ABC). Biết
AB = 3a,
hình chóp DABC có bán √
kính bằng
√ BC = 4a, DA = 5a. Bán√kính mặt cầu ngoại tiếp √
5a 3
5a 2
5a 2
5a 3
A.
.
B.
.
C.
.
D.
.
2
2
3
3
√
Câu 35. Cho bất phương trình 3 2(x−1)+1 − 3 x ≤ x2 − 4x + 3. Tìm mệnh đề đúng.
A. Bất phương trình vơ nghiệm.
B. Bất phương trình đúng với mọi x ∈ (4; +∞).
C. Bất phương trình có nghiệm thuộc khoảng (−∞; 1).
D. Bất phương trình đúng với mọi x ∈ [ 1; 3].
Câu 36. Hàm số nào trong các hàm số sau có đồ thị như hình vẽ bên.
A. y = −2x4 + 4x2 .
B. y = x3 − 3x2
C. y = −x4 + 2x2 + 8. D. y = −x4 + 2x2 .
.
x2 + mx + 1
đạt cực tiểu tại điểm x = 0.
Câu 37. Tìm tất cả các giá trị của tham số m để hàm số y =
x+1
A. Khơng có m.
B. m = 1.
C. m = 0.
D. m = −1.
Câu 38. Tính đạo hàm của hàm số y = 5 x+cos3x
A. y′ = (1 − sin 3x)5 x+cos3x ln 5 .
C. y′ = (1 + 3 sin 3x)5 x+cos3x ln 5 .
B. y′ = (1 − 3 sin 3x)5 x+cos3x ln 5.
D. y′ = 5 x+cos3x ln 5 .
Câu 39. Cho hàm số y = x2 − x + m có đồ thị là (C). Tìm tất cả các giá trị của tham số m để tiếp tuyến
của đồ thị (C) tại giao điểm của (C) với trục Oy đi qua điểm B(1; 2).
A. m = 2.
B. m = 3.
C. m = 1.
D. m = 4.
Câu 40. Tính thể tích của khối trịn xoay tạo thành khi cho hình phẳng giới hạn bởi đồ thị hàm y = x2 ,
trục Ox và hai đường thẳng x = −1; x = 2 quay quanh trục Ox.
33π
32π
31π
A.
.
B. 6π.
C.
.
D.
.
5
5
5
Trang 3/4 Mã đề 001
Câu 41. Chọn mệnh đề đúng trong các mệnh đề sau:
A. Nếu a > 0 thì a x > ay ⇔ x < y.
B. Nếu a < 1 thì a x > ay ⇔ x < y.
x
y
C. Nếu a > 0 thì a = a ⇔ x = y.
D. Nếu a > 1 thì a x > ay ⇔ x > y.
Câu 42. Cho mặt cầu (S ) có bán kính bằng R = 5, một hình trụ (T )có hai đường tròn đáy nằm trên mặt
cầu (S ). Thể
√ tích của khối trụ (T ) lớn
√ nhất bằng bao nhiêu. √
√
500π 3
400π 3
125π 3
250π 3
A.
.
B.
.
C.
.
D.
.
9
9
3
9
3x
Câu 43. Tìm tất cả các giá trị của tham số mđể đồ thị hàm số y =
cắt đường thẳng y = x + m tại
x−2
7
hai điểm phân biệt A, B sao cho tam giác OAB nhận G(1; ) làm trọng tâm.
3
A. m = 1.
B. Không tồn tại m.
C. m = 2.
D. m = −2.
√
Câu 44. Tính đạo hàm của hàm số y = log4 x2 − 1
x
1
x
x
.
B. y′ =
. C. y′ = √
. D. y′ = 2
.
A. y′ = 2
2
(x − 1) ln 4
2(x − 1) ln 4
(x − 1)log4 e
x2 − 1 ln 4
Câu 45. Cho hàm số y = x2 − x + m có đồ thị là (C). Tìm tất cả các giá trị của tham số m để tiếp tuyến
của đồ thị (C) tại giao điểm của (C) với trục Oy đi qua điểm B(1; 2).
A. m = 2.
B. m = 3.
C. m = 1.
D. m = 4.
Câu 46. Tìm tất cả các giá trị của tham số m để hàm số y = mx3 + mx2 − x + 2 nghịch biến trên R.
A. −3 ≤ m ≤ 0.
B. −4 ≤ m ≤ −1.
C. m > −2.
D. m < 0.
Câu 47. Hàm số y = x4 − 4x2 + 1 đồng biến trên khoảng nào trong các khoảng sau đây.
A. (−3; 0).
B. (−1; 1).
C. (1; 5).
D. (3; 5).
Câu 48. Hàm số y = x3 − 3x2 + 1 có giá trị cực đại là:
A. 1.
B. −3.
C. 4.
D. 2.
Câu 49. Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với 0 < a , 1. Chọn mệnh đề đúng.
A. P = 1.
B. P = 2 ln a.
C. P = 2 + 2(ln a)2 .
D. P = 2loga e.
Câu 50. Bác An đem gửi tổng số tiền 320 triệu đồng ở một ngân hàng A theo hình thức lãi kép, ở hai
loại kỳ hạn khác nhau. Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, 1
A. 36080255 đồng.
B. 36080254 đồng.
C. 36080251 đồng.
D. 36080253 đồng.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 4/4 Mã đề 001