Tải bản đầy đủ (.pdf) (4 trang)

Đề ôn khảo sát chất lượng thptqg môn toán (774)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (122.61 KB, 4 trang )

Tài liệu Pdf miễn phí LATEX

ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001

−u (2; −2; 1), kết luận nào sau đây là đúng?
Câu 1. Trong
không gian với hệ tọa độ Oxyz cho →

−u | = 3.
−u | = 1.
−u | = 9.
−u | = 3
A. |→
B. |→
C. |→
D. |→
.
Câu 2. Tìm tất cả các giá trị của tham số m để hàm số y = (1 − m)x4 + 3x2 chỉ có cực tiểu mà khơng có
cực đại
A. m < 1.
B. m ≥ 1.
C. m ≤ 1.
D. m > 1.
Câu 3. Một mặt cầu có diện tích bằng 4πR2 thì thể tích của khối cầu đó là
3
A. 4πR3 .
B. πR3 .


C. πR3 .
4

4
D. πR3 .
3

Câu 4. Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3). Biết C là một
điểm trên mặt phẳng (P):x + z − 27 = 0 sao cho tồn tại các điểm B, D tương ứng thuộc các tia AM, AN
để tứ giác ABCD là hình thoi. Tọa độ điểm C là:
21
A. C(20; 15; 7).
B. C(8; ; 19).
C. C(6; −17; 21).
D. C(6; 21; 21).
2
Câu 5. Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s). Tính
quãng đường S mà chất điểm đó đi được sau 2 giây kể từ lúc bắt đầu chuyển động?
A. S = 28 (m).
B. S = 12 (m).
C. S = 24 (m).
D. S = 20 (m).
Câu 6. Đồ thị hàm số nào sau đây nhận trục tung là trục đối xứng?
A. y = x3 .
B. y = x2 − 2x + 2.
C. y = −x4 + 3x2 − 2.
D. y = x3 − 2x2 + 3x + 2.
Câu 7. Hàm số nào sau đây khơng có cực trị?
A. y = x4 + 3x2 + 2 .
C. y = x2 .


B. y = x3 − 6x2 + 12x − 7.
D. y = cos x.

′ ′ ′

3a. Thể tích khối lăng trụ đã cho là:
Câu 8.
Cho
lăng
trụ
đều
ABC.A
B
C

đáy
bằng
a,
AA
=
4
√ 3
√ 3
3
A. 3a .
B. 8 3a .
C. a .
D. 3a3 .
Câu 9. Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2). Tìm tọa độ

điểm C sao cho ABCD là hình thang có hai cạnh đáy AB, CD và có góc C bằng 450 .
A. C(3; 7; 4).
B. C(−3; 1; 1).
C. C(5; 9; 5).
D. C(1; 5; 3).
Câu 10. Cho hình phẳng (H) giới hạn bởi các đường y = x2 ; y = 0; x = 2 Tính thể tích V của khối tròn
xoay tạo thành khi quay (H) quanh trục Ox.
32
8
32π

B. V = .
C. V =
.
D. V =
.
A. V = .
5
3
5
3
Câu 11. Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3). Tìm tọa độ điểm A là hình chiếu
của M trên mặt phẳng (Oxy).
A. A(0; 0; 3).
B. A(0; 2; 3).
C. A(1; 0; 3).
D. A(1; 2; 0).
Câu 12. Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − 1 = 0. Viết phương trình
mặt cầu (S ) có tâm I(2; 1; −1) và tiếp xúc với (P).
1

A. (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = 3.
B. (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = .
3
1
C. (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = .
D. (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = 3.
3
Trang 1/5 Mã đề 001


Câu 13. Cho x, y, z là ba số thực khác 0 thỏa mãn 2 x = 5y = 10−z . Giá trị của biểu thức A = xy + yz +
zxbằng?
A. 1.
B. 0.
C. 3.
D. 2.
Câu 14. Cắt một hình nón bởi một mặt phẳng đi qua trục của nó, ta được thiết diện là tam giác vuông
với cạnh huyền bằng 2a. Tính thể√tích của khối nón.

4π 2.a3
π 2.a3
2π.a3
π.a3
.
B.
.
C.
.
D.
.

A.
3
3
3
3
Câu 15. Tìm giá trị cực đại yCD của hàm số y = x3 − 12x + 20.
A. yCD = −2.
B. yCD = 52.
C. yCD = 36.
D. yCD = 4.
Câu 16. Biết

R5
1

A. T = 81.

dx
= ln T. Giá trị của T là:
2x − 1
B. T = 9.

C. T = 3.

D. T =


3.

Câu 17. Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − 5 = 0. Bán kính R

của (S) bằng

√ bao nhiêu?
A. R = 29.
B. R = 9.
C. R = 3.
D. R = 21.
Câu 18. Tính tổng tất cả các nghiệm của phương trình 6.22x − 13.6 x + 6.32x = 0
13
A. .
B. −6.
C. 0.
D. 1.
6
Câu 19. Một mặt cầu có diện tích bằng 4πR2 thì thể tích của khối cầu đó là
3
4
A. πR3 .
B. πR3 .
C. πR3 .
D. 4πR3 .
4
3
Câu 20. Tập tất cả các giá trị của tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm
số y = 3x2 + log3 x + m là:
A. S = (−∞; ln3).
B. S = [ 0; +∞).
C. S = [ -ln3; +∞).
D. S = (−∞; 2).
Câu 21. Đồ thị hàm số nào sau đây nhận trục tung là trục đối xứng?

A. y = x3 − 2x2 + 3x + 2.
B. y = x2 − 2x + 2.
C. y = −x4 + 3x2 − 2.
D. y = x3 .
Câu 22. Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1). Tìm tọa độ điểm E thuộc
trục tung sao cho tam giác MNEcân tại E.
A. (0; −2; 0).
B. (−2; 0; 0).
C. (0; 2; 0).
D. (0; 6; 0).
Câu 23. Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3). Biết C là
một điểm trên mặt phẳng (P):x + z − 27 = 0 sao cho tồn tại các điểm B, D tương ứng thuộc các tia AM,
AN để tứ giác ABCD là hình thoi. Tọa độ điểm C là:
21
A. C(20; 15; 7).
B. C(6; 21; 21).
C. C(8; ; 19).
D. C(6; −17; 21).
2
Câu 24. Cho hình chóp đều S .ABCcó cạnh đáy bằng a và cạnh bên bằng b. Thể tích của khối chóp
là:
q

√ 2
2
a b2 − 3a2
3a b
A. VS .ABC =
.
B. VS .ABC =

.
√ 12
√12 2
3ab
a2 3b2 − a2
C. VS .ABC =
.
D. VS .ABC =
.
12
12
x
π
π
π
Câu 25. Biết F(x) là một nguyên hàm của hàm số f (x) =
và F( ) = √ . Tìm F( ).
2
cos x
3
4
3
π
π ln 2
π
π ln 2
π
π ln 2
π
π ln 2

A. F( ) = −
.
B. F( ) = +
.
C. F( ) = −
.
D. F( ) = +
.
4
4
2
4
4
2
4
3
2
4
3
2
Câu 26. Trong hệ tọa độ Oxyz, cho A(1; 2; 3), B(−3; 0; 1). Mặt cầu đường kính AB có phương trình
A. (x + 1)2 + (y − 1)2 + (z − 2)2 = 6.
B. (x − 1)2 + (y + 1)2 + (z + 2)2 = 6.

2
2
2
C. (x + 1) + (y − 1) + (z − 2) = 6.
D. (x + 1)2 + (y − 1)2 + (z − 2)2 = 24.
Trang 2/5 Mã đề 001



x−3
y−6
z−1
=
=

−2
2
1
d2 : x = ty = −tz = 2 (t ∈ R). Đường thẳng đi qua điểm A(0; 1; 1), vng góc với d1 và cắt d2 có phương
trình là:
x
y−1 z−1
x
y−1 z−1
A.
=
=
.
B.
=
=
.
−1
3
4
−1
−3

4
y
z−1
x y−1 z−1
x−1
=
=
.
D. =
=
.
C.
−1
−3
4
1
−3
4
Câu 27. Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1 :

Câu 28. Trong không gian với hệ tọa độ Oxyz, cho A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0) Bán kính
đường√trịn nội tiếp tam giác ABC
√ bằng


A. 3.
B. 4 2.
C. 2 5.
D. 5.
Câu 29. Đồ thị hàm số nào sau đây có 3 điểm cực trị:

A. y = x4 + 2x2 − 1.
B. y = 2x4 + 4x2 + 1. C. y = x4 − 2x2 − 1.
Câu 30. Cho

R4
−1

A. 0.

f (x)dx = 10 và

R4
1

B. 18.

f (x)dx = 8. Tính

R1

D. y = −x4 − 2x2 − 1.

f (x)dx

−1

C. 2.

D. −2.


Câu 31. Tính tổng tất cả các nghiệm của phương trình 6.22x − 13.6 x + 6.32x = 0
13
A. −6.
B.
.
C. 0.
D. 1.
6
Câu 32. Cho log2 b = 3, log2 c = −4. Hãy tính log2 (b2 c)
A. 2.
B. 8.
C. 6.

D. 4.

Câu 33. Một thùng đựng nước có dạng hình trụ có chiều cao h và bán kính đáy√bằng R. Khi đặt thùng
R 3
(mặt nước thấp hơn
nước nằm ngang như hình 1 thì khoảng cách từ trục hình trụ tới mặt nước bằng
2
trục của hình trụ). Khi đặt thùng nước thẳng đứng như hình 2 thì chiều cao của mực nước trong thùng là
h1
h1 . Tính tỉ số



√h
π− 3
2π − 3
2π − 3 3

3
.
B.
.
C.
.
D.
.
A.
12
4
6
12
π
R2
Câu 34. Biết sin 2xdx = ea . Khi đó giá trị a là:
0

A. 0.

B. ln 2.

C. 1.

D. − ln 2.

Câu 35. Gọi l, h, R lần lượt là độ dài đường sinh, chiều cao và bán kính đáy của hình nón (N). Diện tích
tồn phầnS tp của hình nón (N) bằng
A. S tp = 2πRl + 2πR2 . B. S tp = πRl + 2πR2 .
C. S tp = πRl + πR2 .

D. S tp = πRh + πR2 .
Câu 36. Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC là tam giác tù, AB = AC. Góc tạo bởi hai
đường thẳng AA′ và BC ′ bằng 300 ; khoảng cách giữa AA′ và BC ′ bằng a; góc giữa hai mặt phẳng
(ABB′ A′ √
) và (ACC ′ A′ ) bằng 600 . Tính
thể tích khối lăng trụ√ABC.A′ B′C ′ .


B. 9a3 3.
C. 4a3 3.
D. 6a3 3.
A. 3a3 3.
3x
Câu 37. Tìm tất cả các giá trị của tham số mđể đồ thị hàm số y =
cắt đường thẳng y = x + m tại
x−2
7
hai điểm phân biệt A, B sao cho tam giác OAB nhận G(1; ) làm trọng tâm.
3
A. Không tồn tại m.
B. m = −2.
C. m = 2.
D. m = 1.
Câu 38. Hàm số nào trong các hàm số sau có đồ thị như hình vẽ bên.
A. y = x3 − 3x2
B. y = −x4 + 2x2 .
C. y = −2x4 + 4x2 .
.

D. y = −x4 + 2x2 + 8.

Trang 3/5 Mã đề 001


Câu 39. Biết hàm F(x) là một nguyên hàm của hàm f (x) =

π
cos x
và F(− ) = π. Khi đó giá trị
sin x + 2 cos x
2

F(0) bằng:


1

1

A. .
B. ln 2 + .
C. ln 2 + .
D. ln 2 + .
5
5
5
5
4
2
Câu 40. Cho hàm số y = x2 − x + m có đồ thị là (C). Tìm tất cả các giá trị của tham số m để tiếp tuyến
của đồ thị (C) tại giao điểm của (C) với trục Oy đi qua điểm B(1; 2).

A. m = 2.
B. m = 4.
C. m = 1.
D. m = 3.
Câu 41. Cho P = 2a 4b 8c , chọn mệnh đề đúng trong các mệnh đề sau.
A. P = 2a+b+c .
B. P = 2a+2b+3c .
C. P = 2abc .

D. P = 26abc .

Câu 42. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a; cạnh S A vng góc với mặt phẳng
(ABC),
√ S A = 2a. Gọi α là số đo
√ góc giữa đường thẳng S√B và mp(S AC). Tính giá trị sin α.
15
15
5
1
A.
.
B.
.
C.
.
D. .
10
5
3
2





Câu 43. Trong không gian với hệ trục tọa độ Oxyz, cho u = (2; 1; 3), v = (−1; 4; 3). Tìm tọa độ của
−u + 3→
−v .
véc tơ 2→




−u + 3→
−v = (3; 14; 16).
A. 2 u + 3 v = (1; 13; 16).
B. 2→
−u + 3→
−v = (2; 14; 14).
−u + 3→
−v = (1; 14; 15).
C. 2→
D. 2→
Câu 44. Hình phẳng giới hạn bởi đồ thị hàm y = x2 +1 và hai tiếp tuyến của nó tại hai điểm A(−1; 2); B(−2; 5)
có diện tích bằng:
1
1
1
1
B. .
C. .

D. .
A. .
3
6
4
12
Câu 45. Chọn mệnh đề đúng trong các mệnh đề sau:
A. Nếu a > 0 thì a x = ay ⇔ x = y.
B. Nếu a > 1 thì a x > ay ⇔ x > y.
x
y
C. Nếu a < 1 thì a > a ⇔ x < y.
D. Nếu a > 0 thì a x > ay ⇔ x < y.
Câu 46. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh
√ a. Hai mặt phẳng (S AB), (S AC) cùng
2
3. Tính thể tích khối
vng góc
với
mặt
phẳng
(ABC),
diện
tích
tam
giác
S
BC

a




√ chóp S .ABC.
3
3
3
3
a 5
a 15
a 15
a 15
A.
.
B.
.
C.
.
D.
.
3
8
4
16
r
3x + 1
Câu 47. Tìm tập xác định D của hàm số y = log2
x−1
A. D = (−∞; −1] ∪ (1; +∞).
B. D = (1; +∞).

C. D = (−∞; 0).
D. D = (−1; 4).
Câu 48. Hàm số nào trong các hàm số sau đồng biến trên R.
A. y = x4 + 3x2 .
B. y = −x3 − x2 − 5x.
4x + 1
C. y = x3 + 3x2 + 6x − 1.
D. y =
.
x+2
Câu 49. Gọi l, h, R lần lượt là độ dài đường sinh, chiều cao và bán kính đáy của hình nón (N). Diện tích
tồn phầnS tp của hình nón (N) bằng
A. S tp = πRh + πR2 .
B. S tp = 2πRl + 2πR2 . C. S tp = πRl + πR2 .
D. S tp = πRl + 2πR2 .
Câu 50. Cho hình√chóp S .ABCD có đáy ABCD là hình vng. Cạnh S A vng góc với mặt phẳng
(ABCD); S A = 2a 3. Góc giữa hai mặt phẳng (S BC) và (ABCD) bằng 600 . Gọi M, N lần lượt là trung
điểm hai
MN và S C.
√ cạnh AB, AD. Tính khoảng
√ cách giữa hai đường thẳng


a 15
3a 6
3a 6
3a 30
A.
.
B.

.
C.
.
D.
.
2
8
2
10
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 4/5 Mã đề 001



×