Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn khảo sát chất lượng thptqg môn toán (836)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (124.87 KB, 5 trang )

Tài liệu Pdf miễn phí LATEX

ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001

3
, ((ℵ) có đỉnh thuộc (S ) và đáy
2
là đường trịn nằm hồn tồn trên (S )), hãy tìm diện tích xung quanh của (ℵ) khi thể tích của (ℵ)lớn
nhất. √


4 3π

A.
C. 2 3π.
D. √ .
.
B. 4 3π.
3
3
Câu 1. Trong các hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R =

Câu 2. Tính tổng tất cả các nghiệm của phương trình 6.22x − 13.6 x + 6.32x = 0
13
A. 0.
B.
.


C. −6.
D. 1.
6
p
Câu 3. Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) 1 − y. Kết luận nào
sau đây là sai?
A. Nếux > 2 thìy < −15.
B. Nếux = 1 thì y = −3.
C. Nếu 0 < x < π thì y > 1 − 4π2 .
D. Nếu 0 < x < 1 thì y < −3.
Câu 4.√ Bất đẳng thức
√ nào esau đây là đúng?
π
A. ( 3 + 1) > ( 3 + 1) .
C. 3−e > 2−e .

π
B. 3√
< 2π .

e
π
D. ( 3 − 1) < ( 3 − 1) .

Câu 5. Phương trình tiếp tuyến với đồ thị hàm số y = log5 x tại điểm có hồnh độ x = 5 là:
x
1
x
1
A. y =


.
B. y =
−1+
.
5 ln 5 ln 5
5 ln 5
ln 5
x
x
1
C. y =
+ 1.
D. y =
+1−
.
5 ln 5
5 ln 5
ln 5
ax + b
có đồ thị như hình vẽ bên. Kết luận nào sau đây là sai?
Câu 6. Cho hàm số y =
cx + d
A. ac < 0.
B. ab < 0 .
C. ad > 0 .
D. bc > 0 .

Câu 7. Cho hình phẳng (D) giới hạn bởi các đường y = x, y = x, x = 2 quay quanh trục hồnh. Tìm
thể tích V của khối trịn xoay tạo thành?

10π
π
B. V = 1.
C. V = π.
D. V =
.
A. V = .
3
3
1
Câu 8. Kết luận nào sau đây về tính đơn điệu của hàm số y = là đúng?
x
A. Hàm số nghịch biến trên (0; +∞).
B. Hàm số đồng biến trên R.
C. Hàm số nghịch biến trên R.
D. Hàm số đồng biến trên (−∞; 0) ∪ (0; +∞).

d = 1200 . Gọi K,
Câu 9. Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a 5 và BAC
I lần lượt
(A1 BK).
√ là trung điểm của cạnh CC1 , BB1 . Tính khoảng√cách từ điểm I đến mặt phẳng


a 5
a 15
a 5
A.
.
B. a 15.

C.
.
D.
.
3
6
3
x−1
y+2
z
Câu 10. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :
=
= . Viết phương
1
−1
2
trình mặt phẳng (P) đi qua điểm M(2; 0; −1)và vng góc với d.
A. (P) : x − 2y − 2 = 0. B. (P) : x − y − 2z = 0. C. (P) : x − y + 2z = 0. D. (P) : x + y + 2z = 0.
Câu 11. Biết

R5
1

A. T = 81.

dx
= ln T. Giá trị của T là:
2x − 1

B. T = 3.


C. T = 3.

D. T = 9.
Trang 1/5 Mã đề 001


Câu 12. Cho khối tứ diện ABCD có thể tích V và điểm M trên cạnh AB sao cho AB = 4MB. Tính thể
tích của khối tứ diện B.MCD.
V
V
V
V
A. .
B. .
C. .
D. .
5
4
3
2
Câu 13. Cho tứ diện đều ABCD có cạnh bằng a. Tính diện tích xung quanh của hình trụ có đáy là đường
trịn ngoại
tam giác BCD và có chiều cao bằng chiều√cao của tứ diện.
√ tiếp

2
√ 2
2π 2.a
π 3.a2

π 2.a2
A.
.
B. π 3.a .
C.
.
D.
.
3
2
3
Câu 14. Giá trị nhỏ nhất của hàm số y = 2x + cos xtrên đoạn [0; 1] bằng?
A. π.
B. 0.
C. −1.

D. 1.

Câu 15. Tìm tất cả m sao cho điểm cực tiểu của đồ thị hàm số y = x3 + x2 + mx − 1nằm bên phải trục
tung.
1
1
B. 0 < m < .
C. Không tồn tại m.
D. m < 0.
A. m < .
3
3

Câu 16. Tìm tất cả các khoảng đồng biến của hàm số y = x − 2 x + 2017.

1
1
C. (0; 1).
D. ( ; +∞).
A. (1; +∞) .
B. (0; ).
4
4
Câu 17. Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + 5 = 0. Tọa độ của một
véc tơ pháp tuyến của (P) là
A. (−2; 1; 2).
B. (−2; −1; 2).
C. (2; −1; −2).
D. (2; −1; 2).
1
là đúng?
x
B. Hàm số đồng biến trên R.
D. Hàm số nghịch biến trên R.

Câu 18. Kết luận nào sau đây về tính đơn điệu của hàm số y =
A. Hàm số nghịch biến trên (0; +∞).
C. Hàm số đồng biến trên (−∞; 0) ∪ (0; +∞).

Câu 19. Cho 0 < a , 1; 0 < x , 2. Đẳng thức nào sau đây là sai?
A. loga (x − 2)2 = 2loga (x − 2).
B. aloga x = x.
1
C. loga x2 = 2loga x.
D. loga2 x = loga x .

2
Câu 20. Cho lăng trụ đều ABC.A′ B′C ′ có tất cả các cạnh đều bằng a. Tính khoảng cách giữa hai đường
thẳng√AB′ và BC ′ .

2a
a
3a
5a
A.
.
B. √ .
C.
.
D. √ .
2
3
5
5
Câu 21. Cho hình chóp đều S .ABCcó cạnh đáy bằng a và cạnh bên bằng b. Thể tích của khối chóp
là:

√ 2
a2 3b2 − a2
3ab
A. VS .ABC =
.
B. VS .ABC =
.
12
12

q

√ 2
a2 b2 − 3a2
3a b
C. VS .ABC =
.
D. VS .ABC =
.
12
12
Câu 22. Cho hình lập phương ABCD.A′ B′C ′ D′ . Tính góc giữa hai đường thẳng AC và BC ′ .
A. 360 .
B. 300 .
C. 450 .
D. 600 .
Câu 23. Hàm số nào sau đây đồng biến trên R?
A. y = x2 .
C. y = tan x.

B. y = x√4 + 3x2 + 2. √
D. y = x2 + x + 1 − x2 − x + 1.

Câu 24. Phương trình tiếp tuyến với đồ thị hàm số y = log5 x tại điểm có hồnh độ x = 5 là:
x
x
1
A. y =
+ 1.
B. y =

−1+
.
5 ln 5
5 ln 5
ln 5
x
1
x
1
C. y =
+1−
.
D. y =

.
5 ln 5
ln 5
5 ln 5 ln 5
Trang 2/5 Mã đề 001


Câu 25. Tìm tất cả các giá trị của tham số m để giá trị lớn nhất của hàm số y = −x2 + 2mx − 1 − 2m trên
đoạn [−1; 2] nhỏ hơn 2.
7
B. m ∈ (0; 2).
C. m ≥ 0.
D. m ∈ (−1; 2).
A. −1 < m < .
2
Câu 26. Người ta cần cắt một tấm tơn có hình dạng là một elíp với độ dài trục lớn bằng 2a, độ dài trục

bé bằng 2b (a > b > 0) để được một tấm tơn có dạng hình chữ nhật nội tiếp elíp. Người ta gị tấm tơn
hình chữ nhật thu được thành một hình trụ khơng có đáy như hình bên. Tính thể tích lớn nhất có thể được
của khối trụ thu được.
4a2 b
2a2 b
4a2 b
2a2 b
B. √ .
D. √ .
A. √ .
C. √ .
3 3π
3 3π
3 2π
3 2π
1
1
1
Câu 27. Rút gọn biểu thức M =
+
+ ... +
ta được:
loga x loga2 x
logak x
k(k + 1)
k(k + 1)
4k(k + 1)
k(k + 1)
A. M =
.

B. M =
.
C. M =
.
D. M =
.
3loga x
2loga x
loga x
loga x
x−3
y−6
z−1
=
=

−2
2
1
d2 : x = ty = −tz = 2 (t ∈ R). Đường thẳng đi qua điểm A(0; 1; 1), vng góc với d1 và cắt d2 có phương
trình là:
x
y−1 z−1
x y−1 z−1
=
.
B.
=
=
.

A. =
1
−3
4
−1
−3
4
x−1
y
z−1
x
y−1 z−1
C.
=
=
.
D.
=
=
.
−1
−3
4
−1
3
4
Câu 28. Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1 :

Câu 29. Tìm tất cả các giá trị của tham số m để hàm số y = (m + 2)
biến trên R.

A. m ≥ −8.

B. m ≤ −2.

C. m ≤ 0.

x3
− (m + 2)x2 + (m − 8)x + m5 nghịch
3
D. m < −3.

Câu 30. Một vật chuyển động với gia tốc a(t) = −20(1 + 2t)−2 . Khi t = 0 thì vận tốc của vật là 30 (m/s).
Quãng đường vật đó đi được sau 2 giây gần với giá trị nào nhất sau đây?
A. 47m.
B. 48m.
C. 49m.
D. 50m.
Câu 31. Một bình đựng nước dạng hình nón (khơng có đáy), đựng đầy nước. Người ta thả vào đó một
khối cầu có đường kính bằng chiều cao của bình nước và đo được thể tích nước tràn ra ngoài là 18π
(dm3). Biết rằng khối cầu tiếp xúc với tất cả các đường sinh của hình nón và đúng một nửa khối cầu chìm
trong nước. Tính thể tích nước cịn lại trong bình.
A. 12π(dm3 ).
B. 6π(dm3 ).
C. 24π(dm3 ).
D. 54π(dm3 ).
Câu 32. Trong hệ tọa độ Oxyz, cho A(1; 2; 1), B(1; 1; 0), C(1; 0; 2). Tìm tọa độ D để ABCD là hình bình
hành.
A. (1; −1; 1).
B. (−1; 1; 1).
C. (1; −2; −3).

D. (1; 1; 3).
Câu 33. Tính tổng tất cả các nghiệm của phương trình 6.22x − 13.6 x + 6.32x = 0
13
A. 1.
B. −6.
C. 0.
D. .
6
Câu 34. Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với 0 < a , 1. Chọn mệnh đề đúng.
A. P = 2 ln a.
B. P = 2loga e.
C. P = 1.
D. P = 2 + 2(ln a)2 .
Câu 35. Hàm số y = x4 − 4x2 + 1 đồng biến trên khoảng nào trong các khoảng sau đây.
A. (1; 5).
B. (−1; 1).
C. (3; 5).
D. (−3; 0).
Câu 36. Trong khơng gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) đi qua điểm A(1; 2; 3)
−n (2; 1; −4).
và có một véc tơ pháp tuyến là →
A. −2x − y + 4z − 8 = 0.
B. 2x + y − 4z + 5 = 0.
C. 2x + y − 4z + 1 = 0.
D. 2x + y − 4z + 7 = 0.
Trang 3/5 Mã đề 001



2x − x2 + 3

Câu 37. Đồ thị hàm số y =
có số đường tiệm cận đứng là:
x2 − 1
A. 1.
B. 3.
C. 2.

D. 0.

Câu 38. Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC là tam giác tù, AB = AC. Góc tạo bởi hai
đường thẳng AA′ và BC ′ bằng 300 ; khoảng cách giữa AA′ và BC ′ bằng a; góc giữa hai mặt phẳng
′ ′ ′
(ABB′ A′ √
) và (ACC ′ A′ ) bằng 600 . Tính
√ thể tích khối lăng trụ
√ABC.A B C .

3
3
3
B. 9a 3.
C. 4a 3.
D. 3a3 3.
A. 6a 3.
3x
Câu 39. Tìm tất cả các giá trị của tham số mđể đồ thị hàm số y =
cắt đường thẳng y = x + m tại
x−2
7
hai điểm phân biệt A, B sao cho tam giác OAB nhận G(1; ) làm trọng tâm.

3
A. m = 1.
B. m = 2.
C. m = −2.
D. Không tồn tại m.
Câu 40. Chọn mệnh đề đúng trong các mệnh đề sau:
A. Nếu a < 1 thì a x > ay ⇔ x < y.
B. Nếu a > 0 thì a x = ay ⇔ x = y.
C. Nếu a > 0 thì a x > ay ⇔ x < y.
D. Nếu a > 1 thì a x > ay ⇔ x > y.
Câu 41. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng
x = −1; x = 2.
23
29
25
27
A. .
B.
.
C. .
D. .
4
4
4
4
4
Câu 42. Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x − 4x trên đoạn [−1; 2] lần lượt là M, m.
Tính M + m.
A. 4.
B. 6.

C. 5.
D. 3.
Câu 43. Một hình trụ (T ) có diện tích xung quanh bằng 4π và thiết diện qua trục của hình trụ này là một
hình vng. Diện tích tồn phần của (T ) là
A. 8π.
B. 6π.
C. 12π.
D. 10π.
Câu 44. Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD là hình chữ nhật,AB = a; AD = 2a;
AA′ =√2a. Gọi α là số đo góc giữa
và DB′ . Tính giá trị cos α.
√ hai đường thẳng AC √
1
3
5
3
.
B.
.
C.
.
D. .
A.
2
5
4
2
2
Câu 45. Hình phẳng giới hạn bởi đồ thị hàm y = x +1 và hai tiếp tuyến của nó tại hai điểm A(−1; 2); B(−2; 5)
có diện tích bằng:

1
1
1
1
A. .
B.
.
C. .
D. .
4
12
6
3
4
Câu 46. Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x − 4x trên đoạn [−1; 2] lần lượt là M, m.
Tính tổng M + m.
A. 6.
B. 3.
C. 4.
D. 5.
Câu 47. Chọn mệnh đề đúng trong các mệnh đề sau:
A. Nếu a > 0 thì a x = ay ⇔ x = y.
B. Nếu a < 1 thì a x > ay ⇔ x < y.
C. Nếu a > 1 thì a x > ay ⇔ x > y.
D. Nếu a > 0 thì a x > ay ⇔ x < y.
Câu 48. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 3a; cạnh S A vng góc với mặt
phẳng (ABCD), S A = 2a. Tính thể tích khối chóp S .ABCD
A. 12a3 .
B. 4a3 .
C. 6a3 .

D. 3a3 .
Câu 49. Hàm số nào trong các hàm số sau có đồ thị như hình vẽ bên.
A. y = −2x4 + 4x2 .
B. y = x3 − 3x2
C. y = −x4 + 2x2 .
D. y = −x4 + 2x2 + 8.
.
Câu 50. Bác An đem gửi tổng số tiền 320 triệu đồng ở một ngân hàng A theo hình thức lãi kép, ở hai
loại kỳ hạn khác nhau. Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, 1
A. 36080254 đồng.
B. 36080255 đồng.
C. 36080253 đồng.
D. 36080251 đồng.
Trang 4/5 Mã đề 001


- - - - - - - - - - HẾT- - - - - - - - - -

Trang 5/5 Mã đề 001



×