Tài liệu Pdf miễn phí LATEX
ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001
Câu 1.√ Cho √hai số thực a, bthỏa mãn a > b > 0. Kết luận nào sau đây là sai?
√
√
√5
√
B. ea > eb .
C. 5 a < b.
D. a− 3 < b− 3 .
A. a 2 > b 2 .
Câu 2. Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + 5 = 0. Tọa độ của một véc
tơ pháp tuyến của (P) là
A. (2; −1; 2).
B. (−2; 1; 2).
C. (2; −1; −2).
D. (−2; −1; 2).
Câu 3. Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1). Tìm tọa độ điểm E thuộc
trục tung sao cho tam giác MNEcân tại E.
A. (−2; 0; 0).
B. (0; 6; 0).
C. (0; −2; 0).
D. (0; 2; 0).
x
trên tập xác định của nó là
Câu 4. Giá trị nhỏ nhất của hàm số y = 2
x +1
1
1
A. min y = − .
B. min y = .
C. min y = 0.
D. min y = −1.
R
R
R
R
2
2
Câu 5. Tính tổng tất cả các nghiệm của phương trình 6.22x − 13.6 x + 6.32x = 0
13
A. −6.
B.
.
C. 0.
D. 1.
6
p
Câu 6. Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) 1 − y. Kết luận nào
sau đây là sai?
A. Nếux = 1 thì y = −3.
B. Nếux > 2 thìy < −15.
C. Nếu 0 < x < 1 thì y < −3.
D. Nếu 0 < x < π thì y > 1 − 4π2 .
Câu 7. Đồ thị hàm số nào sau đây có vơ số đường tiệm cận đứng?
A. y = sin x.
B. y = x3 − 2x2 + 3x + 2.
3x + 1
.
C. y = tan x.
D. y =
x−1
Câu 8. Tìm tất cả các giá trị của tham số m để giá trị lớn nhất của hàm số y = −x2 + 2mx − 1 − 2m trên
đoạn [−1; 2] nhỏ hơn 2.
7
A. m ≥ 0.
B. m ∈ (−1; 2).
C. −1 < m < .
D. m ∈ (0; 2).
2
Câu 9. Tìm tất cả các giá trị của tham số m để hàm số y = mx − sin xđồng biến trên R.
A. m ≥ 0.
B. m ≥ 1.
C. m ≥ −1.
D. m > 1.
Câu 10. Cho a > 0 và a , 1. Giá trị của alog
A. 3.
B. 6.
Câu 11. Biết
R5
1
A. T = 3.
√ 3
a
dx
= ln T. Giá trị của T là:
2x − 1
√
B. T = 3.
bằng?
C. 9.
C. T = 9.
D.
√
3.
D. T = 81.
Câu 12. Cho tứ diện đều ABCD có cạnh bằng a. Tính diện tích xung quanh của hình trụ có đáy là đường
trịn ngoại
tam giác BCD và √
có chiều cao bằng chiều√cao của tứ diện.
√ tiếp
2
√
π 3.a
2π 2.a2
π 2.a2
A.
.
B.
.
C.
.
D. π 3.a2 .
2
3
3
Câu 13. Cho hàm số f (x) thỏa mãn f ′′ (x) = 12x2 + 6x − 4 và f (0) = 1, f (1) = 3. Tính f (−1).
A. f (−1) = −3.
B. f (−1) = −5.
C. f (−1) = −1.
D. f (−1) = 3.
Trang 1/5 Mã đề 001
3
Câu 14. Cho hàm số y =
x
− mx + 5. Hỏi hàm số đã cho có thể có nhiều nhất bao nhiêu điểm cực
trị.
A. 3.
B. 2.
C. 4.
Câu 15. Giá trị nhỏ nhất của hàm số y = 2x + cos xtrên đoạn [0; 1] bằng?
A. −1.
B. 1.
C. 0.
D. 1.
D. π.
Câu 16. Tìm tất cả các giá trị của tham số m sao cho đồ thị của hai hàm số y = x3 +x2 và y = x2 +3x+mcắt
nhau tại nhiều điểm nhất.
A. −2 < m < 2.
B. m = 2.
C. −2 ≤ m ≤ 2.
D. 0 < m < 2.
Câu 17. Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s).
Tính quãng đường S mà chất điểm đó đi được sau 2 giây kể từ lúc bắt đầu chuyển động.
A. S = 24 (m).
B. S = 12 (m).
C. S = 28 (m).
D. S = 20 (m).
Câu 18. Cho hình chóp đều S .ABCcó cạnh đáy bằng a và cạnh bên bằng b. Thể tích của khối chóp
là:
√
√ 2
a2 3b2 − a2
3ab
.
B. VS .ABC =
.
A. VS .ABC =
12
q 12 √
√ 2
a2 b2 − 3a2
3a b
.
D. VS .ABC =
.
C. VS .ABC =
12
12
Câu 19. Cho lăng trụ đều ABC.A′ B′C ′ có tất cả các cạnh đều bằng a. Tính khoảng cách giữa hai đường
thẳng√AB′ và BC ′ .
√
3a
2a
a
5a
A.
.
B. √ .
C. √ .
D.
.
2
3
5
5
√
Câu 20. Cho hình phẳng (D) giới hạn bởi các đường y = x, y = x, x = 2 quay quanh trục hồnh. Tìm
thể tích V của khối tròn xoay tạo thành.
10π
π
A. V =
.
B. V = .
C. V = 1.
D. V = π.
3
3
Rm
dx
Câu 21. Cho số thực dươngm. Tính I =
theo m?
2
0 x + 3x + 2
m+2
2m + 2
m+2
m+1
).
B. I = ln(
).
C. I = ln(
).
D. I = ln(
).
A. I = ln(
m+2
2m + 2
m+2
m+1
Câu 22. Trong không gian với hệ tọa độ Oxyz, cho M(2; 3; −1). Tìm tọa độ điểm M ′ đối xứng với M qua
mặt phẳng Oxz?
A. M ′ (2; −3; −1).
B. M ′ (−2; 3; 1).
C. M ′ (−2; −3; −1).
D. M ′ (2; 3; 1).
x
Câu 23. Giá trị nhỏ nhất của hàm số y = 2
trên tập xác định của nó là
x +1
1
1
A. min y = −1.
B. min y = 0.
C. min y = .
D. min y = − .
R
R
R
R
2
2
2
Câu 24. Tính diện tích S của hình phẳng được giới hạn bởi các đường y = x , y = −x
1
1
1
5
A. S = .
B. S = .
C. S = .
D. S = .
2
6
3
6
Câu 25.√Hình nón có bán kính √
đáy R, đường sinh l thì diện tích xung quanh của nó bằng
2
2
A. 2π l − R .
B. π l2 − R2 .
C. πRl.
D. 2πRl.
Câu 26. Trong không gian với hệ tọa độ Oxyz, cho A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0) Bán kính
đường√trịn nội tiếp tam giác ABC
√ bằng
√
√
A. 3.
B. 5.
C. 2 5.
D. 4 2.
Câu 27. Một vật chuyển động với gia tốc a(t) = −20(1 + 2t)−2 . Khi t = 0 thì vận tốc của vật là 30 (m/s).
Quãng đường vật đó đi được sau 2 giây gần với giá trị nào nhất sau đây?
A. 49m.
B. 47m.
C. 50m.
D. 48m.
Trang 2/5 Mã đề 001
√3
a2 b
) bằng
Câu 28. Biết loga b = 2, loga c = 3 với a, b, c > 0; a , 1. Khi đó giá trị của loga (
c
1
2
A. − .
B. 6.
C. .
D. 5.
3
3
Câu 29. Tính diện tích hình phẳng giới hạn bởi đồ thị (C) của hàm số y = x2 − 4x + 5, tiếp tuyến tại
A(1; 2) và tiếp tuyến tại B(4; 5) của đồ thị (C).
9
3
7
5
B. .
C. .
D. .
A. .
4
4
4
4
3
(2 ln x + 3)
Câu 30. Họ nguyên hàm của hàm số f (x) =
là :
x
(2 ln x + 3)4
2 ln x + 3
(2 ln x + 3)2
(2 ln x + 3)4
+ C.
B.
+ C.
C.
+ C.
D.
+ C.
A.
8
2
8
2
Câu 31. Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCD với A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0), D(1;
Độ dài đường cao AH của tứ diện ABCD là:
A. 7 .
B. 9 .
C. 6.
D. 5 .
n
e
R ln x
Câu 32. Tính tích phân I =
dx, (n > 1).
x
1
1
1
1
A. I =
.
B. I = n + 1.
C. I =
.
D. I = .
n+1
n−1
n
1 3 2
x −2x +3x+1
Câu 33. Cho hàm số f (x) = e 3
. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (−∞; 1) và (3; +∞).
B. Hàm số nghịch biến trên khoảng(−∞; 1) và đồng biến trên khoảng(3; +∞).
C. Hàm số đồng biến trên khoảng(−∞; 1) và nghịch biến trên khoảng(3; +∞).
D. Hàm số nghịch biến trên khoảng (−∞; 1) và (3; +∞).
Câu 34. Tính thể tích của khối trịn xoay tạo thành khi cho hình phẳng giới hạn bởi đồ thị hàm y = x2 ,
trục Ox và hai đường thẳng x = −1; x = 2 quay quanh trục Ox.
33π
32π
31π
.
C.
.
D.
.
A. 6π.
B.
5
5
5
Câu 35. Hàm số nào trong các hàm số sau có đồ thị như hình vẽ bên.
A. y = −x4 + 2x2 + 8. B. y = −x4 + 2x2 .
C. y = −2x4 + 4x2 .
D. y = x3 − 3x2
.
Câu 36. Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6). Gọi M là điểm nằm trên
đoạn AB sao cho MA = 2MB. Tìm tọa độ điểm M
2 7 21
5 11 17
7 10 31
4 10 16
B. M( ; ; ).
C. M( ; ; ).
D. M( ; ; ).
A. M( ; ; ).
3 3 3
3 3 3
3 3 3
3 3 6
Câu 37. Cho hình chóp đều S.ABCD có cạnh đáy bằng a và chiều cao bằng 2a, diện tích xung quanh
của hình √
nón đỉnh S và đáy là hình√trịn nội tiếp tứ giác ABCD
√ bằng
√
2
2
2
πa 15
πa 17
πa 17
πa2 17
A.
.
B.
.
C.
.
D.
.
4
8
4
6
Câu 38. Cho P = 2a 4b 8c , chọn mệnh đề đúng trong các mệnh đề sau.
A. P = 2abc .
B. P = 2a+2b+3c .
C. P = 26abc .
D. P = 2a+b+c .
Câu 39. Tìm tất cả các giá trị của tham số m để hàm số y = x3 − 3x + m có giá trị lớn nhất và nhỏ nhất
trên đoạn [ -1; 3] lần lượt là a, b sao cho a.b = −36.
A. m = 0 hoặc m = −10.
B. m = 1.
C. m = 4.
D. m = 0 hoặc m = −16.
Câu 40. Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) và tiếp
xúc với mặt phẳng (P) : 2x + y − 2z + 1 = 0.
A. (x − 1)2 + (y − 2)2 + (z − 4)2 = 2.
B. (x − 1)2 + (y − 2)2 + (z − 4)2 = 1.
2
2
2
C. (x − 1) + (y − 2) + (z − 4) = 3.
D. (x − 1)2 + (y + 2)2 + (z − 4)2 = 1.
Trang 3/5 Mã đề 001
Câu 41. Biết a, b ∈ Z sao cho
A. 2.
R
(x + 1)e2x dx = (
B. 4.
ax + b 2x
)e + C. Khi đó giá trị a + b là:
4
C. 3.
D. 1.
Câu 42. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a; cạnh S A vuông góc với mặt phẳng
(ABC), S A = 2a. Gọi α là số đo góc giữa đường thẳng S B và mp(S AC). Tính giá trị sin α.
√
√
√
15
15
5
1
A.
.
B.
.
C.
.
D. .
5
10
3
2
Câu 43. Cho P = 2a 4b 8c , chọn mệnh đề đúng trong các mệnh đề sau.
A. P = 2abc .
B. P = 26abc .
C. P = 2a+b+c .
D. P = 2a+2b+3c .
Câu 44. Một hình trụ (T ) có diện tích xung quanh bằng 4π và thiết diện qua trục của hình trụ này là một
hình vng. Diện tích tồn phần của (T ) là
A. 8π.
B. 12π.
C. 6π.
D. 10π.
Câu 45. Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD là hình chữ nhật,AB = a; AD = 2a;
AA′ = 2a. Gọi α là số đo góc giữa hai đường thẳng AC và DB′ . Tính giá trị cos α.
√
√
√
3
1
5
3
.
B. .
C.
.
D.
.
A.
2
2
5
4
Câu 46. Cho hàm số y = x2 − x + m có đồ thị là (C). Tìm tất cả các giá trị của tham số m để tiếp tuyến
của đồ thị (C) tại giao điểm của (C) với trục Oy đi qua điểm B(1; 2).
A. m = 3.
B. m = 2.
C. m = 4.
D. m = 1.
Câu 47. Trong không gian với hệ trục tọa độ Oxyz, gọi (P)
√ là mặt phẳng đi qua hai điểm A(1; 1; 1), B(0; 1; 2)
3 2
và khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) bằng
. Giả sử phương trình mặt phẳng (P) có dạng
2
ax + by + cz + 2 = 0. Tính giá trị abc.
A. −4.
B. −2.
C. 2.
D. 4.
A. D = (1; +∞).
3x + 1
x−1
B. D = (−1; 4).
C. D = (−∞; 0).
D. D = (−∞; −1] ∪ (1; +∞).
r
Câu 48. Tìm tập xác định D của hàm số y =
log2
Câu 49. Cho mặt cầu (S ) có bán kính bằng R = 5, một hình trụ (T )có hai đường trịn đáy nằm trên mặt
cầu (S ). Thể tích của khối trụ (T ) lớn nhất bằng bao nhiêu.
√
√
√
√
500π 3
250π 3
125π 3
400π 3
A.
.
B.
.
C.
.
D.
.
9
9
3
9
Câu 50. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 3a; cạnh S A vng góc với mặt
phẳng (ABCD), S A = 2a. Tính thể tích khối chóp S .ABCD
A. 4a3 .
B. 3a3 .
C. 6a3 .
D. 12a3 .
Trang 4/5 Mã đề 001
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 5/5 Mã đề 001