TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 10.
B. 12.
C. 11.
D. 4.
Câu 2. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 17 tháng.
B. 16 tháng.
C. 15 tháng.
D. 18 tháng.
Câu 3. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 21.
B. P = 10.
C. P = −21.
D. P = −10.
Câu 4. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 4}.
B. {4; 3}.
C. {3; 5}.
D. {5; 3}.
π
Câu 5. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2
√
√
1 π3
3 π6
2 π4
e .
B.
e .
C. e .
A.
2
2
2
D. 1.
Câu 6. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B thuộc
∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và AC = BD = a.
Khoảng cách từ A đến mặt phẳng√(BCD) bằng
√
√
√
a 2
a 2
A. a 2.
B.
.
C. 2a 2.
D.
.
4
2
Câu 7. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là
√
√
√
3
4a 3
a3 3
2a3 3
5a3 3
A.
.
B.
.
C.
.
D.
.
3
2
3
3
q
2
Câu 8. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].
B. m ∈ [0; 1].
C. m ∈ [−1; 0].
D. m ∈ [0; 2].
Câu 9. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = 4 + .
B. T = e + 1.
C. T = e + .
D. T = e + 3.
e
e
Câu 10. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 14.
B. ln 10.
C. ln 4.
D. ln 12.
√
Câu 11. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị ngun dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. 62.
C. Vô số.
D. 64.
Câu 12. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 3.
B. Vô nghiệm.
C. 1.
D. 2.
Trang 1/10 Mã đề 1
Câu 13. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn mặt.
B. Năm mặt.
C. Hai mặt.
D. Ba mặt.
Câu 14. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e2 .
B. 2e4 .
C. −2e2 .
D. −e2 .
Câu 15. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. 3.
B. −3.
C. −6.
D. 0.
Câu 16. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = a.
B. lim f (x) = f (a).
x→a
x→a
x→a
C. lim+ f (x) = lim− f (x) = +∞.
x→a
D. f (x) có giới hạn hữu hạn khi x → a.
x→a
Câu 17. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1079
1728
1637
23
A.
.
B.
.
C.
.
D.
.
4913
4913
4913
68
Câu 18. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
√
√
2
−
1
−
3i lần lượt l √
Câu 19. Phần thực√và phần ảo của số phức
z
=
√
√
A. Phần thực là √2 − 1, phần ảo là −√ 3.
B. Phần thực là 1√− 2, phần ảo là −√ 3.
C. Phần thực là 2 − 1, phần ảo là 3.
D. Phần thực là 2, phần ảo là 1 − 3.
Câu 20. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = x + ln x.
B. y0 = 1 − ln x.
Câu 21. Tính lim
x→1
A. −∞.
x3 − 1
x−1
B. 3.
Câu 22. [2-c] Cho hàm số f (x) =
A. 2.
C. y0 = 1 + ln x.
D. y0 = ln x − 1.
C. 0.
D. +∞.
x
9
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
+3
1
C. 1.
D. .
2
9x
B. −1.
1 − 2n
bằng?
3n + 1
1
2
A. .
B. .
3
3
x−3
Câu 24. [1] Tính lim
bằng?
x→3 x + 3
A. 1.
B. +∞.
Câu 23. [1] Tính lim
C. 1.
2
D. − .
3
C. 0.
D. −∞.
Câu 25. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng
√
a 3
a
a
A. a.
B.
.
C. .
D. .
2
2
3
√
Câu 26. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng
√
√
√
3a 38
a 38
3a
3a 58
A.
.
B.
.
C.
.
D.
.
29
29
29
29
Trang 2/10 Mã đề 1
Câu 27. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 20, 128 triệu đồng. B. 70, 128 triệu đồng. C. 50, 7 triệu đồng.
D. 3, 5 triệu đồng.
1
Câu 28. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.
B. 2 < m ≤ 3.
C. 2 ≤ m ≤ 3.
D. 0 < m ≤ 1.
Câu 29. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A
hợp với đáy một góc 60◦ . Thể tích√khối chóp S .ABCD là √
√
a3 3
a3 3
B.
.
C.
.
A. a3 3.
6
3
12 + 22 + · · · + n2
Câu 30. [3-1133d] Tính lim
n3
2
A. +∞.
B. 0.
C. .
3
Câu 31. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. −2 + 2 ln 2.
B. 4 − 2 ln 2.
C. e.
Câu 32. Khối đa diện đều loại {3; 3} có số cạnh
A. 6.
B. 4.
C. 8.
⊥ (ABCD). Mặt bên (S CD)
√
2a3 3
D.
.
3
D.
1
.
3
D. 1.
D. 5.
Câu 33. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −15.
B. −5.
C. −12.
D. −9.
Câu 34. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m < 0.
B. m = 0.
C. m > 0.
D. m , 0.
x+2
đồng biến trên khoảng
Câu 35. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x + 5m
(−∞; −10)?
A. 1.
B. 2.
C. Vô số.
D. 3.
1 − xy
Câu 36. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x√+ y.
√
√
√
9 11 + 19
2 11 − 3
9 11 − 19
18 11 − 29
A. Pmin =
. B. Pmin =
.
C. Pmin =
. D. Pmin =
.
9
3
9
21
Câu 37. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp
√ đã cho
√ là 1728. Khi đó, các kích thước của hình hộp là
A. 2 3, 4 3, 38.
B. 6, 12, 24.
C. 2, 4, 8.
D. 8, 16, 32.
√3
Câu 38. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga a bằng
1
1
A. − .
B. .
C. 3.
D. −3.
3
3
3a
Câu 39. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng √
a 2
a
2a
a
A.
.
B. .
C.
.
D. .
3
4
3
3
Câu 40. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối tứ diện đều.
C. Khối lập phương.
D. Khối bát diện đều.
Trang 3/10 Mã đề 1
Câu 41. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 2.
B. 3.
C. Vô số.
D. 1.
Câu 42. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 2).
B. (0; +∞).
C. (−∞; 0) và (2; +∞). D. (0; 2).
Câu 43. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hồn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 22 triệu đồng.
B. 3, 03 triệu đồng.
C. 2, 25 triệu đồng.
D. 2, 20 triệu đồng.
√
√
4n2 + 1 − n + 2
bằng
Câu 44. Tính lim
2n − 3
3
C. 2.
D. +∞.
A. 1.
B. .
2
Câu 45. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
Câu 46. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng là hình lăng trụ đều.
B. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ tứ giác đều là hình lập phương.
Câu 47. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
Câu 48.√Thể tích của tứ diện đều √
cạnh bằng a
√
a3 2
a3 2
a3 2
.
B.
.
C.
.
A.
12
2
4
Z 2
ln(x + 1)
Câu 49. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. −3.
B. 3.
C. 0.
√
x+ 1−x2
√
x+ 1−x2
√
a3 2
D.
.
6
D. 1.
Câu 50. [12215d] Tìm m để phương trình 4
− 4.2
− 3m + 4 = 0 có nghiệm
3
9
3
A. m ≥ 0.
B. 0 < m ≤ .
C. 0 ≤ m ≤ .
D. 0 ≤ m ≤ .
4
4
4
Câu 51. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; +∞).
B. (−∞; 6, 5).
C. [6, 5; +∞).
D. (4; 6, 5].
Câu 52. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≥ .
B. m > .
C. m ≤ .
D. m < .
4
4
4
4
Câu 53. Khối đa diện đều loại {3; 4} có số đỉnh
A. 10.
B. 8.
C. 4.
D. 6.
2
x − 5x + 6
Câu 54. Tính giới hạn lim
x→2
x−2
A. 0.
B. −1.
C. 5.
D. 1.
Câu 55. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối 20 mặt đều.
C. Khối bát diện đều.
D. Khối tứ diện đều.
Trang 4/10 Mã đề 1
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = e + 1.
B. xy = −e + 1.
C. xy0 = −ey − 1.
D. xy0 = ey − 1.
π π
Câu 57. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 7.
B. 1.
C. 3.
D. −1.
Câu 56. [3-12217d] Cho hàm số y = ln
3
Câu 58. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e3 .
B. e2 .
C. e5 .
D. e.
Câu 59. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (III).
B. Cả ba mệnh đề.
C. (I) và (II).
Câu 60.
bằng 1 là:
√ Thể tích của khối lăng trụ tam giác đều có cạnh √
3
3
3
.
B. .
C.
.
A.
2
4
12
D. (II) và (III).
√
3
D.
.
4
Câu 61. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 46cm3 .
B. 72cm3 .
C. 64cm3 .
D. 27cm3 .
2n2 − 1
Câu 62. Tính lim 6
3n + n4
2
C. 2.
D. 0.
A. 1.
B. .
3
Câu 63. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|
√
√
√
√
12 17
A. 34.
B. 5.
C.
.
D. 68.
17
Câu 64. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 5 mặt.
C. 4 mặt.
Câu 65. [2] Tổng các nghiệm của phương trình 3
A. 6.
B. 7.
D. 6 mặt.
x2 −3x+8
= 92x−1 là
C. 5.
D. 8.
C. 7.
D. 5.
√
Câu 66. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√
√ cho là
√
√
3
πa 3
πa3 3
πa3 6
πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =
.
2
6
6
3
Câu 67. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 0.
B. 9.
Câu 68. Phát biểu nào sau đây là sai?
A. lim qn = 1 với |q| > 1.
C. lim
1
= 0 với k > 1.
nk
1
B. lim √ = 0.
n
D. lim un = c (Với un = c là hằng số).
Trang 5/10 Mã đề 1
Câu 69. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị nhỏ nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới
" đây?
!
5
5
A. (1; 2).
B. 2; .
C.
;3 .
D. [3; 4).
2
2
√
ab.
Câu 70. [2]√Tìm m để giá trị nhỏ nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 2
A. m = ± 2.
B. m = ± 3.
C. m = ±3.
D. m = ±1.
Câu 71. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tam giác.
B. Hai khối chóp tứ giác.
C. Một khối chóp tam giác, một khối chóp ngữ giác.
D. Một khối chóp tam giác, một khối chóp tứ giác.
Câu 72. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
A. f 0 (0) = 1.
B. f 0 (0) = ln 10.
C. f 0 (0) =
Câu 73. Khối đa diện đều loại {3; 4} có số cạnh
A. 6.
B. 8.
1
.
ln 10
D. f 0 (0) = 10.
C. 10.
D. 12.
Câu 74. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng S B và AD bằng
√
√
√
√
a 2
a 2
.
C.
.
D. a 3.
A. a 2.
B.
2
3
3
2
Câu 75. Cho hàm số y = x + 3x . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
B. Hàm số nghịch biến trên khoảng (−2; 1).
C. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
x2
Câu 76. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
B. M = e, m = 0.
C. M = e, m = 1.
D. M = e, m = .
A. M = , m = 0.
e
e
[ = 60◦ , S O
Câu 77. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S
√ BC) bằng
√
2a 57
a 57
a 57
A.
.
B.
.
C.
.
D. a 57.
19
19
17
2
2
sin x
Câu 78.
+ 2cos x lần
√ [3-c] Giá trị nhỏ nhất và giá√trị lớn nhất của hàm số f (x) = 2
√ lượt là
A. 2 và 3.
B. 2 và 2 2.
C. 2 và 3.
D. 2 2 và 3.
Câu 79. [2]√Tìm m để giá trị lớn nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 8
A. m = ± 3.
B. m = ± 2.
C. m = ±3.
D. m = ±1.
log(mx)
Câu 80. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m > 4.
B. m < 0.
C. m ≤ 0.
D. m < 0 ∨ m = 4.
2
Câu 81. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 4.
B. 2.
C. 5.
D. 3.
Câu 82. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 1).
B. Hàm số đồng biến trên khoảng (1; 2).
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số nghịch biến trên khoảng (−∞; 0).
Trang 6/10 Mã đề 1
Câu 83. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 2ac
3b + 3ac
A.
.
B.
.
C.
.
c+3
c+2
c+1
Câu 84. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −3.
B. m = 0.
C. m = −2.
D.
3b + 3ac
.
c+2
D. m = −1.
1
5
Câu 85. [2] Tập xác định của hàm số y = (x − 1) là
A. D = R.
B. D = (1; +∞).
C. D = R \ {1}.
D. D = (−∞; 1).
Câu 86. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng số cạnh của khối chóp.
B. Số mặt của khối chóp bằng 2n+1.
C. Số cạnh của khối chóp bằng 2n.
D. Số đỉnh của khối chóp bằng 2n + 1.
n−1
Câu 87. Tính lim 2
n +2
A. 1.
B. 0.
C. 3.
D. 2.
Câu 88. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 89. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 3 mặt.
C. 4 mặt.
D. 6 mặt.
√
Câu 90. [1] Biết log6 a = 2 thì log6 a bằng
A. 4.
B. 6.
C. 36.
D. 108.
Câu 91. Dãy số nào có giới hạn bằng 0?!
n
−2
A. un = n2 − 4n.
B. un =
.
3
!n
6
C. un =
.
5
√
√
Câu 92.
Tìm
giá
trị
lớn
nhất
của
hàm
số
y
=
x
+
3
+
6−x
√
√
A. 2 3.
B. 3 2.
C. 3.
D. un =
D. 2 +
n3 − 3n
.
n+1
√
3.
Câu 93. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Khơng có.
B. Có hai.
C. Có vơ số.
D. Có một.
Câu 94. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 5.
B. V = 4.
C. V = 3.
D. V = 6.
Câu 95. Khối đa diện đều loại {4; 3} có số đỉnh
A. 8.
B. 6.
C. 4.
D. 10.
Câu 96. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 5
a3 3
a3 5
a3 5
.
B.
.
C.
.
D.
.
A.
12
12
6
4
Câu 97. Khối đa diện đều loại {4; 3} có số mặt
A. 6.
B. 8.
C. 12.
D. 10.
1 3
Câu 98. [2D1-3] Cho hàm số y = − x + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2] ∪ [−1; +∞). B. −2 ≤ m ≤ −1.
C. −2 < m < −1.
D. (−∞; −2) ∪ (−1; +∞).
Trang 7/10 Mã đề 1
Câu 99. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. 0.
B. +∞.
C. 1.
D. 2.
Câu 100. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
◦
đáy (ABC)
tích khối chóp S .ABC là √
√ một góc bằng 60 . Thể
√
3
3
a 3
a
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
4
4
8
12
Câu 101. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. (−∞; −3].
B. [−1; 3].
C. [−3; 1].
D. [1; +∞).
Câu 102. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
B. .
C. 1.
D. 3.
A. .
2
2
[ = 60◦ , S O
Câu 103. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√
√ với mặt đáy và S O = a. Khoảng cách từ A đến (S
√ BC) bằng
√
2a 57
a 57
a 57
.
B. a 57.
.
D.
.
A.
C.
19
17
19
Câu 104. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng
là
√
√ góc với đáy, S C = a 3. Thể tích khối chóp S 3.ABCD
3
a 3
a3
a 3
.
B. a3 .
C.
.
D.
.
A.
3
9
3
Câu 105. Khối đa diện đều loại {3; 3} có số mặt
A. 5.
B. 3.
C. 4.
D. 2.
Câu 106. Cho hình chóp S .ABCD có√đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết
a 5. Thể tích khối chóp S .ABCD là
√
√ S H ⊥ (ABCD), S A =
4a3
2a3
2a3 3
4a3 3
.
B.
.
C.
.
D.
.
A.
3
3
3
3
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥
Câu 107. Cho hình chóp S .ABC có BAC
(ABC). Thể
√
√ tích khối chóp S .ABC là
√
√
a3 3
a3 2
a3 3
2
A.
.
B. 2a 2.
.
D.
.
C.
24
12
24
Câu 108. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P.
B. d song song với (P).
C. d ⊥ P.
D. d nằm trên P hoặc d ⊥ P.
Câu 109. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 2.
B. 1.
C. −1.
5
Câu 110. Tính lim
n+3
A. 1.
B. 3.
C. 0.
Câu 111. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 1.
B. 2.
D. 6.
D. 2.
1
3|x−1|
= 3m − 2 có nghiệm duy
C. 4.
D. 3.
x+3
Câu 112. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. Vô số.
B. 1.
C. 2.
D. 3.
Trang 8/10 Mã đề 1
Câu 113. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung
điểm cạnh√AB, biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là
√
a3
a3
2a3 3
4a3 3
.
B.
.
C.
.
D.
.
A.
3
6
3
3
! x3 −3mx2 +m
1
Câu 114. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m ∈ (0; +∞).
B. m , 0.
C. m ∈ R.
D. m = 0.
Câu 115. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 12.
B. 10.
C. 27.
D. 3.
Câu 116. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 23.
B. 22.
C. 24.
D. 21.
Câu 117. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. 2n3 lần.
B. n3 lần.
C. 2n2 lần.
D. n3 lần.
Câu 118. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 − 2; m = 1.
B. M = e−2 + 2; m = 1.
−2
C. M = e + 1; m = 1.
D. M = e2 − 2; m = e−2 + 2.
x = 1 + 3t
Câu 119. [1232h] Trong không gian Oxyz, cho đường thẳng d :
y = 1 + 4t . Gọi ∆ là đường thẳng đi
z = 1
qua điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
trình là
x
=
1
+
7t
x
=
−1
+
2t
x
=
1
+
3t
x = −1 + 2t
A.
.
B.
D.
y=1+t
y = −10 + 11t . C.
y = 1 + 4t .
y = −10 + 11t .
z = 1 + 5t
z = 6 − 5t
z = 1 − 5t
z = −6 − 5t
Câu 120. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng
√
1
A. 5.
B. 25.
C. .
D. 5.
5
√
Câu 121. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là √
√
√
a3
a3 3
a3 3
3
.
B.
.
C. a 3.
D.
.
A.
4
12
3
Câu 122. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
D. − .
A. −e.
B. − .
C. − 2 .
2e
e
e
Câu 123. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim− f (x) = f (b).
B. lim+ f (x) = f (a) và lim− f (x) = f (b).
x→a
x→a
x→b
x→b
C. lim+ f (x) = f (a) và lim+ f (x) = f (b).
D. lim− f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→a
x→b
x→b
!
1
1
1
Câu 124. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
A. 1.
B. 0.
C. 2.
D. .
2
√
Trang 9/10 Mã đề 1
8
Câu 125. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 96.
B. 64.
C. 82.
D. 81.
Câu 126. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 4 lần.
B. Tăng gấp đôi.
C. Tăng gấp 8 lần.
D. Tăng gấp 6 lần.
q
2
Câu 127. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x + log23 x + 1 + 4m −
√ i
h
1 = 0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 2].
B. m ∈ [0; 4].
C. m ∈ [−1; 0].
D. m ∈ [0; 1].
Câu 128. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm
0
A đến đường
√ thẳng BD bằng
√
√
√
abc b2 + c2
b a2 + c2
a b2 + c2
c a2 + b2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 129. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun z.
√
√
√
√
5 13
.
A. 2 13.
B. 2.
C. 26.
D.
13
x=t
Câu 130. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :
y = −1 và hai mặt phẳng (P), (Q)
z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
A. (x − 3)2 + (y + 1)2 + (z + 3)2 = .
B. (x + 3)2 + (y + 1)2 + (z + 3)2 = .
4
4
9
9
2
2
2
2
2
2
D. (x − 3) + (y − 1) + (z − 3) = .
C. (x + 3) + (y + 1) + (z − 3) = .
4
4
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
B
3.
2.
C
4.
5.
B
6.
7.
B
8.
9.
11.
D
C
B
16.
C
B
23.
C
D
14.
19. A
21.
D
12.
D
17.
C
10. A
B
13.
15.
B
D
B
18.
C
20.
C
22.
C
24.
C
25. A
26.
27. A
28.
29.
C
30.
31.
C
32. A
33.
C
34.
D
B
D
D
35.
B
36.
B
37.
B
38.
B
40.
C
41. A
42.
C
43. A
44. A
39.
C
45.
C
46.
47.
C
48. A
C
50.
49. A
51.
D
52.
53.
D
54.
55.
B
56.
57.
B
58.
59.
C
61.
D
63.
B
D
C
D
62.
D
65.
B
66.
67.
B
68. A
1
C
60.
64.
C
D
C
D
70.
C
69.
D
71.
D
72.
B
73.
D
74.
B
76.
B
C
75.
77.
B
78.
D
79.
B
80.
D
81. A
82. A
D
83.
84.
C
85.
B
86.
C
87.
B
88.
C
89.
B
90. A
91.
B
92.
B
93.
B
94.
B
95. A
96. A
97. A
98.
99. A
100.
101.
104.
D
105.
C
102. A
C
103.
B
C
106.
107.
D
108.
109.
D
110.
D
B
D
C
111. A
112.
D
113. A
114.
D
115.
D
116.
117.
D
118. A
119.
B
121.
123.
D
129.
120.
B
122.
B
124. A
B
125.
127.
B
D
C
D
126.
C
128.
C
130. A
2