Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg (309)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (150.81 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
C. 2e + 1.
A. 3.
B. .
e
Z 2
ln(x + 1)
Câu 2. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. −3.
B. 0.
C. 1.
Câu 3. Tính lim
A. 1.

2n2 − 1
3n6 + n4
B.


2
.
3

C. 2.

D. 2e.

D. 3.

D. 0.

Câu 4. Cho khối chóp S .ABC√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
Thể tích khối chóp S .ABC √là
√ với đáy và S C = a 3.3 √

3
a 3
2a3 6
a3 3
a 6
.
B.
.
C.
.
D.
.
A.

12
4
9
2
Câu 5. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.424.000.
B. 102.016.000.
C. 102.016.000.
D. 102.423.000.
Câu 6. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

B. aα bα = (ab)α .
C. aα+β = aα .aβ .
D. aαβ = (aα )β .
A. β = a β .
a
1 − xy
Câu 7. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x√+ y.



18 11 − 29
2 11 − 3

9 11 − 19
9 11 + 19
. B. Pmin =
. C. Pmin =
.
D. Pmin =
.
A. Pmin =
9
21
3
9
3
2
x
Câu 8. [2] Tìm
√ m để giá trị nhỏ nhất của hàm số y = 2x + (m + 1)2 trên [0; 1] bằng 2 √
A. m = ± 3.
B. m = ±1.
C. m = ±3.
D. m = ± 2.

Câu 9. Khối lập phương thuộc loại
A. {4; 3}.
B. {5; 3}.

C. {3; 4}.

Câu 10. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1

1
A. V = 3S h.
B. V = S h.
C. V = S h.
2
3
Câu 11. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 5.
B. 1.
C. 3.

D. {3; 3}.
D. V = S h.
D. 2.

Câu 12. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 2; m = 1.
B. M = e−2 + 1; m = 1.
−2
C. M = e − 2; m = 1.
D. M = e2 − 2; m = e−2 + 2.
Câu 13. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 1.
B. 2.
C. 7.
D. 3.
Trang 1/10 Mã đề 1




Câu 14. √
Thể tích của khối lập phương có cạnh bằng a 2


2a3 2
A.
.
B. 2a3 2.
C. V = a3 2.
3

D. V = 2a3 .

x+3
Câu 15. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. Vô số.
B. 1.
C. 2.
D. 3.
Câu 16. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là√
2a3 3
4a3 3
a3
a3
.

B.
.
C.
.
D.
.
A.
3
3
3
6
Câu 17. [1] Giá trị của biểu thức 9log3 12 bằng
A. 144.
B. 2.
C. 4.
D. 24.
Câu 18. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng S B và AD bằng




a 2
a 2
.
D.
.
A. a 3.
B. a 2.
C.

3
2
2n − 3
Câu 19. Tính lim 2
bằng
2n + 3n + 1
A. 1.
B. −∞.
C. 0.
D. +∞.
Câu 20. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

1
A. .
B. 25.
C. 5.
D. 5.
5
0 0 0 0
0
Câu 21.√ [2] Cho hình lâp phương
√ bằng
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
a 6
a 3
a 6
a 6
A.
.
B.

.
C.
.
D.
.
7
2
2
3
Câu 22. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {5; 3}.
B. {4; 3}.
C. {3; 4}.
D. {3; 5}.


Câu 23. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 3 mặt.
C. 4 mặt.

D. 5 mặt.

Câu 24. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 4.
B. V = 6.
C. V = 5.
D. V = 3.
1

Câu 25. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (−∞; 1) và (3; +∞). B. (1; 3).
C. (−∞; 3).
D. (1; +∞).
Câu 26. Dãy số nào sau đây có giới hạn là 0?
1 − 2n
n2 + n + 1
A. un =
.
B.
u
=
.
n
5n + n2
(n + 1)2

C. un =

n2 − 2
.
5n − 3n2

D. un =

n2 − 3n
.
n2


Câu 27. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tứ giác.
B. Một khối chóp tam giác, một khối chóp tứ giác.
C. Hai khối chóp tam giác.
D. Một khối chóp tam giác, một khối chóp ngữ giác.
1 − n2
Câu 28. [1] Tính lim 2
bằng?
2n + 1
1
A. .
B. 0.
2

1
C. − .
2

D.

1
.
3
Trang 2/10 Mã đề 1


Z
Câu 29. Cho

1


xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b

0

1
.
2
Câu 30. Bát diện đều thuộc loại
A. {4; 3}.
B. {3; 3}.
A. 0.

B.

1
.
4

C. 1.

D.

C. {5; 3}.

D. {3; 4}.

Câu 31. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −3 ≤ m ≤ 3.
B. m ≤ 3.

C. −2 ≤ m ≤ 2.
D. m ≥ 3.

Câu 32. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 3 nghiệm.
B. Vô nghiệm.
C. 2 nghiệm.
D. 1 nghiệm.
Câu 33. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B
C là


3
a 3
a3
a3 3
3
A.
.
B.
.
C. a .
D.
.
2
3
6
Câu 34. [2] Đạo hàm của hàm số y = x ln x là

A. y0 = ln x − 1.
B. y0 = 1 − ln x.
C. y0 = x + ln x.
D. y0 = 1 + ln x.
Câu 35. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. −7, 2.
B. 7, 2.
C. 72.

D. 0, 8.

Câu 36. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng




a 2
a 2
A. 2a 2.
.
D.
.
B. a 2.
C.
2
4
Câu 37. Khẳng định nào sau đây đúng?
A. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.

B. Hình lăng trụ đứng là hình lăng trụ đều.
C. Hình lăng trụ tứ giác đều là hình lập phương.
D. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
Câu 38. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (2; +∞).
B. (−∞; 1).
C. (0; 2).
2n + 1
Câu 39. Tính giới hạn lim
3n + 2
1
3
B. 0.
C. .
A. .
2
2
Câu 40. Trong các mệnh đề dưới đây, mệnh đề nào
! sai?
un
A. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn

D. R.

D.

2
.

3

!
un
B. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
v
n
!
un
C. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
D. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
ln x p 2
1
Câu 41. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
1
8
8
1
A. .
B. .
C. .
D. .
3
3

9
9
Trang 3/10 Mã đề 1


Câu 42. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
B. a 6.
C. 2a 6.
D.
A. a 3.
.
2
[ = 60◦ , S O
Câu 43. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc

√ với mặt đáy và S O = a. Khoảng cách từ O đến (S√BC) bằng

2a 57
a 57
a 57
C.
A.
.

B. a 57.
.
D.
.
17
19
19
1
Câu 44. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 1.
B. 2.
C. 3.
D. 4.
Câu 45. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 10 cạnh, 6 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
Câu 46. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 1587 m.
B. 27 m.
C. 387 m.
D. 25 m.
Câu 47. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A

đến đường√thẳng BD0 bằng



abc b2 + c2
c a2 + b2
b a2 + c2
a b2 + c2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 48.
bằng 1 là:
√ Thể tích của khối lăng√trụ tam giác đều có cạnh √
3
3
3
3
.
B.
.

C.
.
D. .
A.
4
2
12
4
Câu 49. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 12 năm.
C. 10 năm.
D. 14 năm.
Câu 50. Khối đa diện đều loại {3; 5} có số đỉnh
A. 12.
B. 8.
x2 − 5x + 6
Câu 51. Tính giới hạn lim
x→2
x−2
A. 0.
B. 1.

C. 30.

D. 20.


C. −1.

D. 5.

Câu 52. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
3
9
A. .
B. 3.
C. .
D. 1.
2
2
Câu 53. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 12.
B. 10.
C. 3.
D. 27.
Câu 54. Phát biểu nào sau đây là sai?
A. lim qn = 1 với |q| > 1.
C. lim

1
= 0 với k > 1.
nk

1
B. lim √ = 0.
n

D. lim un = c (Với un = c là hằng số).
Trang 4/10 Mã đề 1


Câu 55. Trong khơng gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu
của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu
!
! của A lên BC là
7
8
5
A.
; 0; 0 .
B.
; 0; 0 .
C.
; 0; 0 .
D. (2; 0; 0).
3
3
3
Câu 56. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình chóp.
B. Hình lập phương.
C. Hình lăng trụ.

D. Hình tam giác.

Câu 57.! Dãy số nào sau đây có giới

!n hạn là 0?
n
1
4
A.
.
B.
.
3
e

!n
5
D. − .
3

!n
5
C.
.
3

Câu 58. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
x2 − 9
Câu 59. Tính lim
x→3 x − 3

A. 3.
B. 6.

C. +∞.

D. −3.

Câu 60. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m < 3.
B. m > 3.
C. m ≤ 3.
D. m ≥ 3.
Câu 61. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
A. f 0 (0) = ln 10.
B. f 0 (0) =
.
C. f 0 (0) = 1.
D. f 0 (0) = 10.
ln 10
Câu 62. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
.
B. a3 .
C.

.
D.
.
A.
24
12
6
Câu 63. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m < 0.
B. m > 0.
C. m , 0.
D. m = 0.
Câu 64. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
B. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
C. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Z
u0 (x)
D.
dx = log |u(x)| + C.
u(x)

x2 + 3x + 5
Câu 65. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. − .

B. 1.
C. .
D. 0.
4
4
Câu 66. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e4 .
B. 2e2 .
C. −e2 .
D. −2e2 .
Câu 67. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3
Trang 5/10 Mã đề 1



2 3
A. 1.
C.
.
D. 2.
3
Câu 68. Tính thể tích khối lập phương biết tổng diện tích √

tất cả các mặt bằng 18.
A. 8.
B. 27.
C. 3 3.
D. 9.

B. 3.

Câu 69. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
.
C. −4.
D. −2.
A. −7.
B.
27
Câu 70. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối bát diện đều. C. Khối 12 mặt đều.
D. Khối lập phương.
Câu 71. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −2.
B. 4.
C. −4.

D. 2.

Câu 72. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là −4.
B. Phần thực là −3, phần ảo là 4.

C. Phần thực là 3, phần ảo là −4.
D. Phần thực là 3, phần ảo là 4.
!
!
!
1
2
2016
4x
. Tính tổng T = f
+f
+ ··· + f
Câu 73. [3] Cho hàm số f (x) = x
4 +2
2017
2017
2017
2016
A. T =
.
B. T = 2016.
C. T = 2017.
D. T = 1008.
2017
Câu 74. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vơ nghiệm.
B. 3.
C. 2.
D. 1.
Câu 75. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị

A. m > −1.
B. m > 1.
C. m > 0.

D. m ≥ 0.

Câu 76. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m > .
B. m ≤ .
C. m < .
D. m ≥ .
4
4
4
4
0
Câu 77. Cho hai đường thẳng d và d cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có vơ số.
B. Có hai.
C. Khơng có.
D. Có một.
Câu 78. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Tăng lên n lần.
B. Giảm đi n lần.

C. Tăng lên (n − 1) lần. D. Không thay đổi.
Câu 79. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 2.
B. y(−2) = −18.
C. y(−2) = 6.
D. y(−2) = 22.
Câu 80. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {5; 2}.
B. {3}.
C. {2}.
D. {5}.
Câu 81. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối tứ diện đều.

C. Khối 12 mặt đều.

Câu 82. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (0; −2).
B. (2; 2).
C. (−1; −7).
Câu 83.
Z Trong các khẳng định sau, khẳng định nào sai? Z
0dx = C, C là hằng số.

A.
Z
C.


dx = x + C, C là hằng số.

B.
Z
D.

xα dx =

D. Khối bát diện đều.
D. (1; −3).

xα+1
+ C, C là hằng số.
α+1

1
dx = ln |x| + C, C là hằng số.
x

Trang 6/10 Mã đề 1



Câu 84. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là √


a3 3
a3
a3 3

3
B.
.
C.
.
D.
.
A. a 3.
3
4
12
2

2

sin x
Câu 85.
+ 2cos x lần lượt
√ [3-c] Giá trị nhỏ nhất và√giá trị lớn nhất của hàm số f (x) = 2
√ là
A. 2 và 3.
B. 2 2 và 3.
C. 2 và 3.
D. 2 và 2 2.

Câu 86. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một mơn nằm cạnh nhau là
1
1
9

2
B.
.
C. .
D.
.
A. .
5
10
5
10
Câu 87. Khối đa diện đều loại {3; 5} có số cạnh
A. 12.
B. 8.
C. 20.
D. 30.
Câu 88. [1] Đạo hàm của hàm số y = 2 x là
1
1
A. y0 =
.
B. y0 = 2 x . ln x.
C. y0 = x
.
D. y0 = 2 x . ln 2.
ln 2
2 . ln x
Câu 89. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√ của hàm số. Khi đó tổng

√M + m

A. 8 2.
B. 8 3.
C. 7 3.
D. 16.
1
Câu 90. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = e − 1.
B. xy = e + 1.
C. xy0 = −ey + 1.
D. xy0 = −ey − 1.
un
Câu 91. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. 0.
B. 1.
C. −∞.
D. +∞.
Câu 92. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối chóp S .ABCD là


3

3

a
a3 5
a
15
6
.
B. a3 6.
.
D.
.
A.
C.
3
3
3
Câu 93.
√ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
√ [4-1245d] Trong tất cả các số phức z thỏa mãn hệ
A. 10.
B. 2.
C. 2.
D. 1.
1
a
, với a, b ∈ Z. Giá trị của a + b là
Câu 94. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
4 b ln 3
A. 4.

B. 1.
C. 7.
D. 2.
[ = 60◦ , S A ⊥ (ABCD).
Câu 95. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh

√ S C là a. Thể tích khối chóp S .ABCD là
3
3

a 3
a 2
a3 2
3
A.
D.
.
B.
.
C. a 3.
.
6
12
4
Câu 96. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A.
.

B. 18.
C. 27.
D. 12.
2
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 97. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là



a3 3
a3 2
a3 3
2
A.
.
B. 2a 2.
C.
.
D.
.
24
24
12
Câu 98. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 1.
B. 22016 .
C. 0.

D. e2016 .
Trang 7/10 Mã đề 1


! x3 −3mx2 +m
1
Câu 99. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m , 0.
B. m ∈ R.
C. m = 0.
D. m ∈ (0; +∞).
Câu 100. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lăng trụ tam giác.
B. Khối bát diện đều.
C. Khối lập phương.
D. Khối tứ diện.
!
1
1
1
+ ··· +
Câu 101. [3-1131d] Tính lim +
1 1+2
1 + 2 + ··· + n
3
5
A. 2.

B. .
C. .
D. +∞.
2
2
Câu 102. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 1200 cm2 .
C. 120 cm2 .
D. 160 cm2 .
Câu 103. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≥ .
B. m < .
C. m > .
D. m ≤ .
4
4
4
4
Câu 104. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
13
5
23
9

.
B.
.
C. − .
D. −
.
A.
25
100
16
100
Câu 105. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 21.
B. 24.
C. 23.
D. 22.
Câu 106. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
.
B. log2 a = − loga 2.
C. log2 a =
.
D. log2 a = loga 2.
A. log2 a =
loga 2
log2 a
Câu 107. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn

nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ.
100.(1, 01)3
120.(1, 12)3
triệu.
B.
m
=
triệu.
A. m =
(1, 12)3 − 1
3
100.1, 03
(1, 01)3
C. m =
triệu.
D. m =
triệu.
3
(1, 01)3 − 1
Câu 108. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2

2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 1; 6).
B. ~u = (1; 0; 2).
C. ~u = (3; 4; −4).
D. ~u = (2; 2; −1).
2n + 1
Câu 109. Tìm giới hạn lim
n+1
A. 0.
B. 1.
C. 3.
D. 2.
Câu 110. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc
45◦ . Tính
.ABC theo a
√ thể tích của khối chóp 3S√

3
a 15
a 5
a3 15
a3
A.
.
B.
.
C.
.

D.
.
25
25
5
3
Trang 8/10 Mã đề 1


3
2
x
Câu 111. [2]
√ của hàm số y = 2x + (m + 1)2 trên [0; 1] bằng 8
√ Tìm m để giá trị lớn nhất
A. m = ± 3.
B. m = ± 2.
C. m = ±3.
D. m = ±1.

Câu 112. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n2 lần.
B. 3n3 lần.
C. n lần.
D. n3 lần.
Câu 113.
√cạnh bằng a
√ Thể tích của tứ diện đều
3
3

a 2
a 2
.
B.
.
A.
6
2


a3 2
C.
.
4


a3 2
D.
.
12

Câu 114. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; +∞).
B. (−∞; 0) và (2; +∞). C. (0; 2).

D. (−∞; 2).

Câu 115. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 2).
B. Hàm số đồng biến trên khoảng (0; 2).

C. Hàm số đồng biến trên khoảng (0; +∞).
D. Hàm số nghịch biến trên khoảng (0; 2).
Câu 116. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?

A. y = log 14 x.
B. y = loga x trong đó a = 3 − 2.
C. y = log π4 x.
D. y = log √2 x.
Câu 117. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 13.
B. 2020.
C. log2 2020.
D. 13.
x
x+1
x−2 x−1
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−3; +∞).
B. (−∞; −3).
C. [−3; +∞).
D. (−∞; −3].
Câu 118. [4-1212d] Cho hai hàm số y =


Câu 119. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 8 lần.
B. Tăng gấp 6 lần.
C. Tăng gấp đôi.
D. Tăng gấp 4 lần.
Câu 120. [3-12214d] Với giá trị nào của m thì phương trình
A. 2 ≤ m ≤ 3.

B. 2 < m ≤ 3.

Câu 121. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối lập phương.
B. Khối tứ diện đều.

1
3|x−2|

= m − 2 có nghiệm

C. 0 < m ≤ 1.

D. 0 ≤ m ≤ 1.

C. Khối 12 mặt đều.

D. Khối bát diện đều.

Câu 122. Mệnh đề nào sau đây sai?

Z
A. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
!0
Z
B.
f (x)dx = f (x).

f (x)dx = F(x) + C.

C. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
D. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m < 0 ∨ m > 4.
D. m ≤ 0.

Câu 123. [3-1226d] Tìm tham số thực m để phương trình
A. m < 0.

B. m < 0 ∨ m = 4.

Câu 124. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể tích khối chóp S .ABC là √


a3 3
a3
a3 3

a3 3
A.
.
B.
.
C.
.
D.
.
8
4
4
12
Trang 9/10 Mã đề 1


Câu 125. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P.
B. d ⊥ P.
C. d song song với (P).
D. d nằm trên P hoặc d ⊥ P.
Câu 126. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 3.
B. 1.
C. Vô nghiệm.
D. 2.

Câu 127. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.

B. 63.
C. Vơ số.
D. 62.
Câu 128. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 6.
B. 2.
C. −1.

D. 1.

x−1 y z+1
= =

2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. −x + 6y + 4z + 5 = 0.
B. 2x + y − z = 0.
C. 2x − y + 2z − 1 = 0.
D. 10x − 7y + 13z + 3 = 0.
Câu 129. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình

Câu 130. Hàm số y =
A. x = 1.

x2 − 3x + 3
đạt cực đại tại
x−2

B. x = 3.

C. x = 2.

D. x = 0.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A

2. A

3.

D

4. A

5. A

6. A
C

7.


8.

9. A
D

11.
13.

B

10.

C

12.

C

14.

15.

D

B

B

16.


C
D

18.

17. A
C

19.
21.

20.
22.

D

23.

B

C

D

24. A

25. A

26. A


27.

B

28.

29.

B

30.

C
D
C

31. A

32.

33. A

34.

35. A

36.

C

C

37.

D

38.

39.

D

40. A

41.

42.

C

43.

D

44. A

45.

D


46.

47.

D

48. A

49. A
C

52. A

53.

C

54. A

60.

B

62.

D
C

64.


C

65. A
67.

D

58. A

61. A
63.

B

56.

B

57. A
59.

B

50. A

51.
55.

D


D
1

D

66.

C

68.

C


69.

D

70. A
72.

71. A
D

73.

B
D

74.


75. A

76.

B
B

77.

B

78.

79.

B

80.

81. A

D

82. A

83.

B


84.

85.

B

86.

D
D

87.

D

88.

89.

D

90. A
92.

91. A
93.

D

94.


95.

D

96.

97.

C

98.

99.

C

100.

101. A

D
C
B
C
D

102. A

103.


D

104.

105.

D

106. A

107.

D

108.

109.

D

110. A

111.

B

B

112.


B

113.

D

D

114.

D
B

116.

D

117. A

118.

D

119. A

120.

115.


B

121.
123.

D

B

122.

B

D

124. A

125.

D

126.

127.

D

128. A

129.


D

130. A

2

B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×