Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn tập thpt qg môn toán (921)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (122.34 KB, 5 trang )

Tài liệu Pdf free LATEX

ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001

Câu 1. Đẳng thức nào đúng trong các đẳng thức sau?
A. (1 + i)2018 = −21009 . B. (1 + i)2018 = −21009 i. C. (1 + i)2018 = 21009 .
D. (1 + i)2018 = 21009 i.
(1 + i)(2 + i) (1 − i)(2 − i)
+
. Trong tất cả các kết luận sau, kết luận
Câu 2. Cho số phức z thỏa mãn z =
1−i
1+i
nào đúng?
1
A. z = z.
C. |z| = 4.
D. z là số thuần ảo.
B. z = .
z
Câu 3. Cho A = 1 + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ . Hỏi đâu là phương án đúng?
A. A = 0.
B. A = 1.
C. A = 2ki.
D. A = 2k.
Câu 4. Cho z là một số phức. Xét các mệnh đề sau :
I. Nếu z = z thì z là số thực.


II. Mơ-đun
√ của z bằng độ dài đoạnOM, với O là gốc tọa độ và M là điểm biểu diễn của số phức z.
III. |z| = z · z
A. 0.
B. 3.
C. 1.
D. 2.
2017
4 + 2i + i
có tổng phần thực và phần ảo là
Câu 5. Số phức z =
2−i
A. -1.
B. 3.
C. 2.
D. 1.
Câu 6. Với mọi số phức z, ta có |z + 1|2 bằng
A. z2 + 2z + 1.
B. z · z + z + z + 1.
C. z + z + 1.
i
R2
R 2 h1
Câu 7. Nếu 0 f (x)dx = 4 thì 0 2 f (x) − 2 dx bằng
A. −2.
B. 6.
C. 0.

D. |z|2 + 2|z| + 1.
D. 8.


Câu 8. Cho hàm số bậc ba y = f (x) có đồ thị là đường cong trong hình bên. Giá trị cực đại của hàm số
đã cho là
A. 2.
B. −1.
C. 0.
D. 3.
Câu 9. Trong không gian Oxyz, cho hai điểm A(0; 0; 10) và B(3; 4; 6). Xét các điểm M thay đổi sao cho
tam giác OAM khơng có góc tù và có diện tích bằng 15. Giá trị nhỏ nhất của độ dài đoạn thẳng MB
thuộc khoảng nào dưới đây?
A. (3; 4).
B. (2; 3).
C. (6; 7).
D. (4; 5).
Câu 10. Cho hàm số bậc ba y = f (x) có đồ thị là đường cong trong hình bên. Có bao nhiêu giá trị
nguyên của tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt?
A. 2.
B. 3.
C. 5.
D. 4.
Câu 11. Trên khoảng (0; +∞), đạo hàm của hàm số y = xπ là:
A. y′ = πxπ .
B. y′ = πxπ−1 .
C. y′ = π1 xπ−1 .

D. y′ = xπ−1 .

Câu 12. Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R). Gọi d là khoảng cách từ O đến (P). Khẳng
định nào dưới đây đúng?
A. d < R.

B. d = R.
C. d > R.
D. d = 0.
Câu 13. Biết x = 2 là một nghiệm của phương trình x2 + (m2 − 1)x − 8(m − 1) = 0 (m là tham số phức
có phần ảo√âm). Khi đó, mơ-đun của √
số phức w = m2 − 3m +√i bằng bao nhiêu ?
A. |w| = 5.
B. |w| = 3 5.
C. |w| = 73.
D. |w| = 5.
Câu 14. Biết z = 1 + i và z = 2 là một trong các nghiệm của phương trình z3 + az2 + bz + c = 0 (với
a, b ∈ R ). Khi đó tổng a + b + c bằng bao nhiêu?
A. 2.
B. 1.
C. 0.
D. −2.
Trang 1/5 Mã đề 001


Câu 15. Biết z0 là nghiệm phức có phần ảo âm của phương trình z2 − (3 − 2i)z + 5 − i = 0
Khi đó tổng phần thực và phần ảo của z0 là
A. -1.
B. 1.
C. 2.
D. -3.
Câu 16. Tổng nghịch đảo các nghiệm của phương trình z4 −z3 −2z2 +6z−4 = 0 trên tập số phức bằng
3
1
3
1

A. − .
B. − .
C. .
D. .
2
2
2
2
Câu 17. Gọi M, N là hai điểm biểu diễn các số phức là nghiệm của phương trình z2 − 4z + 29 = 0. Độ
dài MN bằng√bao nhiêu?

A. MN = 10.
B. MN = 10.
C. MN = 5.
D. MN = 2 5.
Câu 18. Phương trình (2 − i)z + 3(1 + iz) = 7 + 8i có nghiệm là.
A. z = 3 − i.
B. z = 3 + i.
C. z = −3 − i.

D. z = −3 + i.

z+i+1
là số thuần ảo?
z + z + 2i
C. Một Parabol.
D. Một Elip.

Câu 19. Tìm tập hợp các điểm M biểu diễn số phức z sao cho w =
A. Một đường thẳng.


B. Một đường tròn.

Câu 20. Cho z1 , z2 là hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = 1. Tính giá trị biểu thức
P = |z1 + z2 |.




3
2
A. P = 3.
B. P = 2.
C. P =
.
D. P =
.
2
2

Câu 21. (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 2. Mệnh đề nào
dưới đây đúng ?
1
3
1
3
A. < |z| < .
B. |z| < .
C. |z| > 2.
D. ≤ |z| ≤ 2.

2
2
2
2

Câu 22. Biết số phức z thỏa mãn |z − 3 − 4i| = 5 và biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn nhất.
Tính |z|.



A. |z| = 50.
B. |z| = 33.
C. |z| = 10.
D. |z| = 5 2.
z
Câu 23. Cho các số phức z, w khác 0 được biểu diễn bởi hai điểm A, B trong mặt phẳng Oxy. Nếu là
w
số thuần ảo thì mệnh đề nào sau đây đúng?
A. Tam giác OAB là tam giác vuông.
B. Tam giác OAB là tam giác cân.
C. Tam giác OAB là tam giác đều.
D. Tam giác OAB là tam giác nhọn.
Câu 24. Gọi z1 và z2 là các nghiệm của phương trình z2 − 4z + 9 = 0. Gọi M, N là các điểm biểu diễn
của z1 , z2 trên mặt phẳng phức. Khi đó√ độ dài của MN là

A. MN = 4.
B. MN = 5.
C. MN = 2 5.
D. MN = 5.
Câu 25. Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z|. Diện tích hình phẳng

(H) là
A. 2π.
B. π.
C. 4π.
D. 3π.
Câu 26. Cho số phức z thỏa mãn |z| = 4. Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i
là một đường trịn. Tính bán kính r của đường trịn đó.
A. r = 5.
B. r = 20.
C. r = 4.
D. r = 22.
Câu 27. Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z|. Diện tích hình phẳng
(H) là
A. π.
B. 4π.
C. 3π.
D. 2π.
Câu 28. Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là
hình trịn có diện tích bằng bao nhiêu
A. 4π.
B. 3π.
C. π.
D. 2π.
Câu 29. Cho các số phức z thoả mãn (1 + z)2 là số thực. Tập hợp điểm M biểu diễn số phức z là
A. Đường tròn.
B. Parabol.
C. Hai đường thẳng.
D. Một đường thẳng.
Trang 2/5 Mã đề 001



Câu 30. GọiM là điểm biểu diễn số phức z = 3 − 4i và M ′ là điểm biểu diễn của số phức z′ =

1+i
z
2

trong mặt phẳng tọa độ Oxy. Tính diện tích tam giác OMM ′ .
15
25
15
25
A. S = .
B. S = .
C. S = .
D. S = .
2
4
4
2
Câu 31. Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| là đường thẳng d : x+ay+b = 0.
Tính giá trị của biểu thức a + b.
A. 0.
B. 1.
C. 2.
D. −1.







z

z


= 2 ?
Câu 32. Tìm tập hợp các điểm M biểu diễn số phức z sao cho



z − 2i

A. Một Parabol.
B. Một Elip.
C. Một đường thẳng.
D. Một đường tròn.


√ 

2 42 √
+ 3i+ 15. Mệnh đề nào dưới đây là đúng?
Câu 33. Cho số phức z thỏa mãn 1 − 5i |z| =
z
5
3
1
A. < |z| < 4.

B. < |z| < 3.
C. 3 < |z| < 5.
D. < |z| < 2.
2
2
2
Câu 34. Cho số phức z thỏa mãn |z| + z = 0. Mệnh đề nào đúng?
A. |z| = 1.
B. Phần thực của z là số âm.
C. z là một số thực không dương.
D. z là số thuần ảo.






1
Câu 35. Cho số phức z thỏa mãn


z +


= 3. Tổng giá trị lớn nhất và nhỏ nhất của |z| là
z


A. 5.
B. 5.

C. 3.
D. 13.
4
Câu 36. Cho số phức z thỏa mãn (3 − 4i)z − = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến
|z|
điểm biểu !diễn số phức thuộc tập hợp
nào
sau
đây?
!
!
!
1 9
9
1
1 5
B. 0; .
C. ; .
D. ; +∞ .
A. ; .
4 4
4
2 4
4
z
Câu 37. Cho số phức z , 0 sao cho z không phải là số thực và w =
là số thực. Tính giá trị biểu
1 + z2
|z|
thức

bằng?
1 + |z|2

1
2
1
A. .
B.
.
C. .
D. 2.
2
3
5

1
3
i. Giá trị của (a + bz + cz2 )(a + bz2 + cz) bằng
Câu 38. Cho a, b, c là các số thực và z = − +
2
2
A. a + b + c.
B. a2 + b2 + c2 + ab + bc + ca.
C. 0.
D. a2 + b2 + c2 − ab − bc − ca.
Câu 39. Khối đa diện nào trong các khối đa diện sau có tính chất: “Mỗi mặt của khối đa diện là một tam
giác đều và mỗi đỉnh của nó là đỉnh chung của đúng ba mặt. ”?
A. Khối lập phương.
B. Khối tứ diện đều.
C. Khối bát diện đều.

D. Khối mười hai mặt đều.
Câu 40. Cho hàm số y = f (x) có bảng biến thiên như sau:
x

−∞

y′

+∞

−2



+∞

−2
y
−∞

−2

Đồ thị hàm số y = f (x) có bao nhiêu đường tiệm cận đứng và tiệm cận ngang?
A. 2.
B. 1.
C. 3.
D. 4.
Trang 3/5 Mã đề 001



Câu 41. Tìm giá trị nhỏ nhất của hàm số f (x) = 2x3 − 3x2 − 12x + 10 trên đoạn [−3; 3].
A. −35.

Câu 42. Cho hàm số y =
A. −1.

B. 1.

C. −10.

D. 17.

x+1
. Tìm giá trị lớn nhất của hàm số trên đoạn [−1; 2].
3−x
B. 2.

C. 0.

D. 3.

Câu 43. Điểm cực đại của đồ thị hàm số y = x4 − 2x2 + 3 là
A. x = 1.

B. x = 0.

C. (1; 2).

D. (0; 3).


Câu 44. Cho hàm số y = f (x) liên tục trên R và có đạo hàm f ′ (x) = x(x + 1). Hàm số y = f (x) đồng
biến trên khoảng nào trong các khoảng dưới đây?
A. (−∞; 0).

B. (−1; 0).

C. (−1; +∞).

D. (0; +∞).

Câu 45. Trong không gian Oxyz, cho điểm A(1; 2; 3). Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa
độ là
A. (−1; 2; 3).

B. (−1; −2; −3).

C. (1; 2; −3).

D. (1; −2; 3).

Câu 46. Cho tập hợp A có 15 phần tử. Số tập con gồm hai phần tử của A bằng
A. 30.

B. 225.

C. 105.

D. 210.

Câu 47. Một hộp chứa 15 quả cầu gồm 6 quả màu đỏ được đánh số từ 1 đến 6 và 9 quả màu xanh được

đánh số từ 1 đến 9. Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời
tổng hai số ghi trên chúng là số chẵn bằng
A.

9
.
35

B.

4
.
35

C. 71 .

D.

18
.
35




×