Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn tập thpt qg môn toán (802)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (122.46 KB, 5 trang )

Tài liệu Pdf free LATEX

ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001

Câu 1.
√ Cho số phức z thỏa mãn z(1 + 3i) = 17 + i. Khi đó mơ-đun của số phức w√= 6z − 25i là
A. 29.
B. 5.
C. 13.
D. 2 5.
2(1 + 2i)
= 7 + 8i. Mô-đun của số phức w = z + i + 1 là
Câu 2. Cho số phức z thỏa mãn (2 + i)z +
1+i
A. 13.
B. 4.
C. 3.
D. 5.
Câu 3. Đẳng thức nào đúng trong các đẳng thức sau?
A. (1 + i)2018 = 21009 .
B. (1 + i)2018 = −21009 . C. (1 + i)2018 = 21009 i.

D. (1 + i)2018 = −21009 i.

Câu 4. Cho các mệnh đề sau:
I. Cho x, y là hai số phức thì số phức x + y có số phức liên hợp là x + y.
II. Số phức z = a + bi (a, b ∈ R) thì z2 + (z)2 = 2(a2 − b2 ).


III. Cho x, y là hai số phức thì số phức xy có số phức liên hợp là xy.
IV. Cho x, y là hai số phức thì số phức x − y có số phức liên hợp là x − y.
A. 2.
B. 4.
C. 1.

D. 3.

Câu 5. Cho số phức z = 3 − 2i.Tìm phần thực và phần ảo của số phức z.
A. Phần thực là3 và phần ảo là 2.
B. Phần thực là−3 và phần ảo là −2i.
C. Phần thực là −3 và phần ảo là−2.
D. Phần thực là 3 và phần ảo là 2i.
Câu 6. Cho số phức z = a + bi(a, b ∈ R), trong các mệnh đề sau, đâu là mệnh đề đúng?
A. z − z = 2a.
B. z + z = 2bi.
C. |z2 | = |z|2 .
D. z · z = a2 − b2 .
Câu 7. Cho khối nón có đình S , chiều cao bằng 8 và thể tích bằng 800π
. Gọi A và B là hai điểm thuộc
3
đường√
tròn đáy sao cho AB = 12, khoảng cách từ tâm của đường tròn đáy đến mặt √
phẳng (S AB) bằng
5
24
A. 8 2.
B. 24 .
C. 5 .
D. 4 2.

i
R2
R 2 h1
Câu 8. Nếu 0 f (x)dx = 4 thì 0 2 f (x) − 2 dx bằng
A. −2.
B. 8.
C. 0.
D. 6.
Câu 9. Trên khoảng (0; +∞), đạo hàm của hàm số y = log3 x là:
A. y′ = x ln1 3 .
B. y′ = 1x .
C. y′ = lnx3 .

D. y′ = − x ln1 3 .

Câu R10. Cho hàm số f (x) = cos x + x. Khẳng định nàoR dưới đây đúng?
2
A. f (x)dx = − sin x + x2 + C.
B. f (x)dx = sin x + x2 + C.
R
R
2
C. f (x)dx = − sin x + x2 + C.
D. f (x)dx = sin x + x2 + C.
Câu 11. Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = 7 − 6i có tọa độ là
A. (7; −6).
B. (6; 7).
C. (−6; 7).
D. (7; 6).
Câu 12. Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn các số phức z thỏa mãn |z + 2i| = 1 là một

đường trịn. Tâm của đường trịn đó có tọa độ là
A. (−2; 0).
B. (0; −2).
C. (0; 2).
D. (2; 0).
Câu 13. Biết z = 1 + 2i là một nghiệm phức của phương trình z2 + (m − 1)z + m − 1 = 0 (m là tham số
phức). Khi đó phần ảo của m bằng bao nhiêu?
7
3
7
3
A. .
B. .
C. − .
D. − .
4
4
4
4
2
Câu 14. Cho phương trình bậc hai az + bz + c = 0 (với a, b, c ∈ R). Xét trên tập số phức, trong các
khẳng định sau, đâu là khẳng định sai?
c
A. Phương trình đã cho có tích hai nghiệm bằng .
a
Trang 1/5 Mã đề 001


−b
.

a
C. Nếu ∆ = b2 − 4ac < 0 thì phương trình đã vơ nghiệm.
D. Phương trình đã cho ln có nghiệm.
B. Phương trình đã cho có tổng hai nghiệm bằng

Câu 15. Hai số phức z1 = 3 + i và z2 = 2 − 3i là nghiệm của phương trình nào sau đây?
A. z2 + (5 − 2i)z − 9 + 7i = 0.
B. z2 + (1 + 4i)z − 9 + 7i = 0.
2
C. z − (1 + 4i)z + 9 − 7i = 0.
D. z2 − (5 − 2i)z + 9 − 7i = 0.
Câu 16. Kí hiệu z1 , z2 , z3 và z4 là bốn nghiệm phức của phương trình z4 − z2 − 12 = 0. Tính tổng
T = |z1 | + |z2 | + |z3 | + |z4 |.



A. T = 4.
B. T = 2 3.
C. T = 2 + 2 3.
D. T = 4 + 2 3.
Câu 17. Gọi z1 , z2 , z3 là ba nghiệm phức của phương trình z3 −z2 +2 = 0. Khi đó tổngP = |z1 +z2 +z3 +2−3i|
bằng bao nhiêu?


B. P = 13.
C. P = 5.
D. P = 5.
A. P = 2 5.
Câu 18. Biết z0 là nghiệm phức có phần ảo dương của phương trình z2 − 4z + 20 = 0. Trên mặt phẳng
tọa

độ, điểm nào dưới đây là điểm biểu diễn của số phức w = (1 + i)z0 − 2z0 ?
A. M1 (6; 14).
B. M2 (2; −10).
C. M3 (−2; 10).
D. M4 (6; −14).






−2 − 3i


z + 1


= 1.
Câu 19. Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện


√ 3 − 2i
A. max |z| = 3.
B. max |z| = 1.
C. max |z| = 2.
D. max |z| = 2.
z+i+1
Câu 20. Tìm tập hợp các điểm M biểu diễn số phức z sao cho w =
là số thuần ảo?
z + z + 2i

A. Một đường thẳng.
B. Một đường tròn.
C. Một Elip.
D. Một Parabol.

Câu 21. (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 2. Mệnh đề nào
dưới đây đúng ?
1
1
3
3
B. |z| < .
C. |z| > 2.
D. < |z| < .
A. ≤ |z| ≤ 2.
2
2
2
2
z
Câu 22. Cho các số phức z, w khác 0 được biểu diễn bởi hai điểm A, B trong mặt phẳng Oxy. Nếu là
w
số thuần ảo thì mệnh đề nào sau đây đúng?
A. Tam giác OAB là tam giác nhọn.
B. Tam giác OAB là tam giác cân.
C. Tam giác OAB là tam giác đều.
D. Tam giác OAB là tam giác vuông.
Câu 23. GọiM là điểm biểu diễn số phức z = 3 − 4i và M ′ là điểm biểu diễn của số phức z′ =

1+i

z
2

trong mặt phẳng tọa độ Oxy. Tính diện tích tam giác OMM ′ .
25
15
15
25
A. S = .
B. S = .
C. S = .
D. S = .
4
2
4
2
Câu 24. Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z|. Diện tích hình phẳng
(H) là
A. 3π.
B. 4π.
C. π.
D. 2π.
Câu 25. Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10. Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt

A. 5 và 3.
B. 5 và 4.
C. 10 và 4.
D. 4 và 3.

Câu 26. (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1 + i)z + 1 − 7i| = 2, tìm max |z|.

A. max |z| = 6.
B. max |z| = 4.
C. max |z| = 7.
D. max |z| = 3.

Câu 27. (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 2. Mệnh đề nào
dưới đây đúng ?
3
1
3
1
A. ≤ |z| ≤ 2.
B. < |z| < .
C. |z| > 2.
D. |z| < .
2
2
2
2
Trang 2/5 Mã đề 001


Câu 28. Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là
hình trịn có diện tích bằng bao nhiêu
A. π.
B. 2π.
C. 4π.
D. 3π.
Câu 29. Cho số phức z thỏa mãn |i + 2z| = |z − 3i|. Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3
là một đường thẳng có phương trình là

A. x + y − 8 = 0.
B. x − y + 8 = 0.
C. x + y − 5 = 0.
D. x − y + 4 = 0.
1+i
z
Câu 30. GọiM là điểm biểu diễn số phức z = 3 − 4i và M ′ là điểm biểu diễn của số phức z′ =
2
trong mặt phẳng tọa độ Oxy. Tính diện tích tam giác OMM ′ .
25
25
15
15
B. S = .
C. S = .
D. S = .
A. S = .
4
2
4
2
2
Câu 31. Gọi z1 và z2 là các nghiệm của phương trình z − 2z + 10 = 0. Gọi M, N, P lần lượt là các điểm
biểu diễn của √
z1 , z2 và số phức w √= x + iy trên mặt phẳng phức.√Để tam giác MNP √
đều là số phức k là
A. w = 1 + √27 hoặcw = 1 − √27.
B. w = −√ 27 − i hoặcw =√− 27 + i.
C. w = 1 + 27i hoặcw = 1 − 27i.
D. w = 27 − i hoặcw = 27 + i.

Câu 32. Cho z1 , z2 là hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = 1. Tính giá trị biểu thức
P = |z1 + z√2 |.



2
3
.
B. P = 2.
C. P = 3.
D. P =
.
A. P =
2
2
Câu 33. Gọi z1 ; z2 là hai nghiệm của phương trình z2 − z + 2 = 0.Phần thực của số phức
[(i − z1 )(i − z2 )]2017 bằng bao nhiêu?
A. 22016 .
B. −22016 .
C. 21008 .
D. −21008 .
Câu 34. Cho z1 , z2 là hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = 1. Tính giá trị của biểu thức
P = |z1 + z2 |.




2
3
A. P = 2.

B. P = 3.
C. P =
.
D. P =
.
2
2

2 2
Câu 35. Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = 0 và |z1 | = |z2 | = |z3 | =
. Mệnh đề nào dưới đây
3
đúng?

8
B. |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 2.
A. |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = .
3√
2
2
C. |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 =
.
D. |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 1.
3
z+1
Câu 36. Cho số phức z , 1 thỏa mãn
là số thuần ảo. Tìm |z| ?
z−1
1
A. |z| = 2.

B. |z| = 4.
C. |z| = 1.
D. |z| = .
2
z
Câu 37. Cho số phức z , 0 sao cho z không phải là số thực và w =
là số thực. Tính giá trị biểu
1 + z2
|z|
thức
bằng?
1√+ |z|2
2
1
1
A.
.
B. 2.
C. .
D. .
3
2
5

2
và điểm A trong hình vẽ bên là điểm
Câu 38. (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| =
2
biểu diễn z.
Biết rằng điểm biểu diễn số phức ω =

số phức ω là
A. điểm M.

B. điểm Q.

1
là một trong bốn điểm M, N, P, Q. Khi đó điểm biểu diễn
iz
C. điểm N.

D. điểm P.
Trang 3/5 Mã đề 001


Câu 39. Trong các mệnh đề sau, mệnh đề nào đúng?
A. Hai khối chóp có diện tích đáy bằng nhau thì thể tích bằng nhau.
B. Hai khối chóp có thể tích bằng nhau thì bằng nhau.
C. Hai khối lăng trụ bằng nhau thì thể tích bằng nhau.
D. Hai khối lăng trụ có chiều cao bằng nhau thì thể tích bằng nhau.
Câu 40. Cho hình lăng trụ đứng ABC.A′ B′C ′ có AA′ = 3a, tam giác ABC vng cân tại A và BC = 2a.
Tính thể tích V của khối lăng trụ ABC.A′ B′C ′ .
A. V = 6a3 .
B. V = a3 .
C. V = 3a3 .
D. V = 12a3 .
Câu 41. Hình đa diện dưới đây có bao nhiêu cạnh?

A. 12.

B. 21.

C. 18.
D. 15.
x+1
Câu 42. Cho hàm số y =
. Tìm giá trị lớn nhất của hàm số trên đoạn [−1; 2].
3−x
A. −1.
B. 2.
C. 0.
D. 3.
Câu 43. Cho hàm số y = f (x) liên tục trên R và có đạo hàm f ′ (x) = x(x + 1). Hàm số y = f (x) đồng
biến trên khoảng nào trong các khoảng dưới đây?
A. (−1; +∞).
B. (−∞; 0).
C. (−1; 0).
D. (0; +∞).
Câu 44. Cho hàm số y = x3 − 3x2 − 9x − 5. Trong các khẳng định sau, khẳng định nào sai?
A. Hàm số có một điểm cực đại và một điểm cực tiểu.
B. Hàm số có hai điểm cực trị.
C. Giá trị cực đại của hàm số là 0.
D. Giá trị cực tiểu của hàm số là 3.
2

−16
Câu 45. Có bao nhiêu số nguyên x thỏa mãn log3 x343
< log7
A. 186.
B. 92.
C. 184.


x2 −16
?
27

D. 193.

Câu 46. Cho hàm số y = f (x) có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
A. (1; 3).
B. (0; 2).
C. (−∞; 1).

D. (3; +∞).

Câu 47. Cho hàm số bậc ba y = f (x) có đồ thị là đường cong trong hình bên. Giá trị cực đại của hàm số
đã cho là
A. −1.
B. 0.
C. 3.
D. 2.
Câu 48. Trong không gian Oxyz, cho điểm A(1; 2; 3). Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa
độ là
A. (−1; −2; −3).
B. (−1; 2; 3).
C. (1; 2; −3).
D. (1; −2; 3).
Câu 49. Cho hàm số y = f (x) có đạo hàm f ′ (x) = (x − 2)2 (1 − x) với mọi x ∈ R. Hàm số đã cho đồng
biến trên khoảng nào dưới đây?
A. (2; +∞).
B. (1; 2).

C. (−∞; 1).
D. (1; +∞).
Câu 50. Tích tất cả các nghiệm của phương trình ln2 x + 2 ln x − 3 = 0 bằng
A. e12 .
B. −3.
C. −2.
D.

1
.
e3

Trang 4/5 Mã đề 001


- - - - - - - - - - HẾT- - - - - - - - - -

Trang 5/5 Mã đề 001



×