Tài liệu Pdf free LATEX
ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001
z2
Câu 1. Cho số phức z1 = 2 + 3i, z2 = 5 − i. Giá trị của biểu thức
z1 +
là
z1
√
√
A. 5.
B. 5.
C. 11.
D. 13.
Câu 2. Cho số phức z = 3 − 2i.Tìm phần thực và phần ảo của số phức z.
A. Phần thực là3 và phần ảo là 2.
B. Phần thực là −3 và phần ảo là−2.
C. Phần thực là 3 và phần ảo là 2i.
D. Phần thực là−3 và phần ảo là −2i.
Câu 3. Cho A = 1 + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ . Hỏi đâu là phương án đúng?
A. A = 1.
B. A = 2ki.
C. A = 0.
D. A = 2k.
Câu 4. Cho hai√số phức z1 = 1 + i và z2 √
= 2 − 3i. Tính mơ-đun của số phức z1 + z2 .
B. |z1 + z2 | = 13.
C. |z1 + z2 | = 1.
D. |z1 + z2 | = 5.
A. |z1 + z2 | = 5.
Câu 5. Đẳng thức nào đúng trong các đẳng thức sau?
B. (1 + i)2018 = −21009 . C. (1 + i)2018 = 21009 i. D. (1 + i)2018 = −21009 i.
A. (1 + i)2018 = 21009 .
2(1 + 2i)
= 7 + 8i. Mô-đun của số phức w = z + i + 1 là
Câu 6. Cho số phức z thỏa mãn (2 + i)z +
1+i
A. 3.
B. 4.
C. 5.
D. 13.
Câu 7. Trên khoảng (0; +∞), đạo hàm của hàm số y = xπ là:
A. y′ = xπ−1 .
B. y′ = πxπ−1 .
C. y′ = πxπ .
D. y′ = π1 xπ−1 .
Câu 8. Cho hàm số y = f (x) có đạo hàm f ′ (x) = (x − 2)2 (1 − x) với mọi x ∈ R. Hàm số đã cho đồng
biến trên khoảng nào dưới đây?
A. (1; +∞).
B. (−∞; 1).
C. (1; 2).
D. (2; +∞).
Câu 9. Cho hàm số y = f (x) có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
A. (0; 2).
B. (1; 3).
C. (3; +∞).
D. (−∞; 1).
Câu 10. Cho số phức z = 2 + 9i, phần thực của số phức z2 bằng
A. 36.
B. 4.
C. 85.
D. −77.
Câu 11. Trên khoảng (0; +∞), đạo hàm của hàm số y = log3 x là:
B. y′ = lnx3 .
C. y′ = 1x .
A. y′ = x ln1 3 .
D. y′ = − x ln1 3 .
Câu 12. Cho hàm số bậc ba y = f (x) có đồ thị là đường cong trong hình bên. Giá trị cực đại của hàm số
đã cho là
A. −1.
B. 0.
C. 3.
D. 2.
Câu 13. Cho phương trình bậc hai az2 + bz + c = 0 (với a, b, c ∈ R). Xét trên tập số phức, trong các
khẳng định sau, đâu là khẳng định sai?
A. Phương trình đã cho ln có nghiệm.
−b
B. Phương trình đã cho có tổng hai nghiệm bằng
.
a
C. Nếu ∆ = b2 − 4ac < 0 thì phương trình đã vơ nghiệm.
c
D. Phương trình đã cho có tích hai nghiệm bằng .
a
Câu 14. Biết z = 1 − 3i là một nghiệm của phương trình z2 + az + b = 0 ( với a, b ∈ R ). Khi đó hiệu
a − b bằng
A. −12.
B. 12.
C. −8.
D. 8.
Trang 1/5 Mã đề 001
Câu 15. Biết z là số phức thỏa mãn z2 + 3z + 4 = 0. Khi đó mơ-đun của số phức w = z + 1 bằng bao
nhiêu ?. √
√
√
√
B. |w| = 2.
C. |w| = 3.
D. |w| = 2 2.
A. |w| = 5.
Câu 16. Biết z = 1 + 2i là một nghiệm phức của phương trình z2 + (m − 1)z + m − 1 = 0 (m là tham số
phức). Khi đó phần ảo của m bằng bao nhiêu?
3
7
3
7
A. − .
B. − .
C. .
D. .
4
4
4
4
Câu 17. Tất cả các căn bậc hai của số phức z = 15 − 8i là:
A. 5 − 2i và −5 + 2i.
B. 4 − i và −4 + i.
C. 4 − i và 2 + 3i.
D. 4 + i và −4 + i.
Câu 18. Biết x = 2 là một nghiệm của phương trình x2 + (m2 − 1)x − 8(m − 1) = 0 (m là tham số phức
2
có phần ảo âm).
√ Khi đó, mơ-đun của√số phức w = m − 3m +√i bằng bao nhiêu ?
B. |w| = 73.
C. |w| = 5.
D. |w| = 5.
A. |w| = 3 5.
Câu 19. (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = 1. Tìm giá trị lớn nhất của biểu
thức T = |z + 1| √
+ 2|z − 1|.
√
√
√
B. max T = 2 5.
C. max T = 3 2.
D. max T = 2 10.
A. max T = 3 5.
√
Câu 20. (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 2. Mệnh đề nào
dưới đây đúng ?
3
1
3
1
B. |z| < .
C. |z| > 2.
D. ≤ |z| ≤ 2.
A. < |z| < .
2
2
2
2
Câu 21. Cho số phức z thỏa mãn (z + 1) (z − 2i) là số thuần ảo. Tập hợp các điểm biểu diễn số phức z là
một hình trịn có diện tích bằng
5π
5π
A. 25π.
B.
.
C. 5π.
D. .
4
2
Câu 22. Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là
hình trịn có diện tích bằng bao nhiêu
A. 2π.
B. π.
C. 4π.
D. 3π.
√
Câu 23. (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1 + i)z + 1 − 7i| = 2, tìm max |z|.
A. max |z| = 6.
B. max |z| = 4.
C. max |z| = 3.
D. max |z| = 7.
z−z
=2?
Câu 24. Tìm tập hợp các điểm M biểu diễn số phức z sao cho
z − 2i
A. Một Parabol.
B. Một Elip.
C. Một đường thẳng.
D. Một đường tròn.
Câu 25. Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10. Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt
là
A. 4 và 3.
B. 10 và 4.
C. 5 và 4.
D. 5 và 3.
Câu 26. Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| là đường thẳng d : x+ay+b = 0.
Tính giá trị của biểu thức a + b.
A. 2.
B. 0.
C. −1.
D. 1.
z+i+1
Câu 27. Tìm tập hợp các điểm M biểu diễn số phức z sao cho w =
là số thuần ảo?
z + z + 2i
A. Một Elip.
B. Một đường tròn.
C. Một Parabol.
D. Một đường thẳng.
Câu 28. (Chuyên Lào Cai) Xét số phức z và z có điểm biểu diễn lần lượt là M và M ′ . Số phức ω = (4+3i)z
và ω có điểm biểu diễn lần lượt là N và N ′ . Biết rằng M, M ′ , N, N ′ là bốn đỉnh của hình chữ nhật. Tìm
1
9
9 9
giá trị nhỏ nhất của ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5|.
2
2 2
2
1
1
4
2
A. √ .
B. .
C. √ .
D. √ .
2
13
2
5