Tải bản đầy đủ (.pdf) (5 trang)

Đề luyện thi thpt môn toán (674)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (123.6 KB, 5 trang )

Free LATEX

ĐỀ LUYỆN THI THPT QG MƠN TỐN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 6 trang)
Mã đề 001

Câu 1. Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD là hình bình hành. Hình chiếu vng góc của A′
lên mặt phẳng (ABCD)trùng với giao điểm của AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc giữa mặt
bên (ABB′ A′ ) và mặt đáy bằng 450 . Tính thể tích khối tứ diện ACB′ D′ theo a.
A. 100a3 .
B. 30a3 .
C. 20a3 .
D. 60a3 .
Câu 2. Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − 5 = 0. Bán kính R
của (S) bằng bao nhiêu?


A. R = 3.
B. R = 29.
C. R = 9.
D. R = 21.
π
π
π
x
và F( ) = √ . Tìm F( )
Câu 3. Biết F(x) là một nguyên hàm của hàm số f (x) =
2
cos x


3
4
3
π
π ln 2
π
π ln 2
π
π ln 2
π
π ln 2
A. F( ) = −
.
B. F( ) = −
.
C. F( ) = +
.
D. F( ) = +
.
4
4
2
4
3
2
4
4
2
4
3

2
Câu 4. Tập tất cả các giá trị của tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm
số y = 3x2 + log3 x + m là:
A. S = (−∞; 2).
B. S = (−∞; ln3).
C. S = [ 0; +∞).
D. S = [ -ln3; +∞).
Câu 5. Hình nón có bán kính đáy R, đường sinh l thì diện
bằng
√ tích xung quanh của nó √
2
2
A. πRl.
B. 2πRl.
C. π l − R .
D. 2π l2 − R2 .
Câu 6. Hàm số nào sau đây đồng biến trên R?
A. y = x√4 + 3x2 + 2. √
C. y = x2 + x + 1 − x2 − x + 1.

B. y = tan x.
D. y = x2 .

Câu 7.√ Bất đẳng thức
√ nào esau đây là đúng?
π
A. ( 3 + 1) > ( 3 + 1) .
C. 3−e > 2−e .

π

B. 3√
< 2π .

e
π
D. ( 3 − 1) < ( 3 − 1) .

Câu 8. Tính diện tích S của hình phẳng được giới hạn bởi các đường y = x2 , y = −x
1
1
5
1
A. S = .
B. S = .
C. S = .
D. S = .
2
6
6
3
Câu 9. Cho a, b là hai số thực dương, khác 1. Đặt loga b = m, tính theo m giá trị của P = loga2 b −
log √b a3 .
4m2 − 3
m2 − 12
m2 − 3
m2 − 12
.
B.
.
C.

.
D.
.
A.
2m
2m
m
2m
Câu 10. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x = 1 + 2ty = 2 + (m − 1)tz = 3 − t.
Tìm tất cả các giá trị của tham số m để d có thể viết được dưới dạng chính tắc?
A. m , 0.
B. m , 1.
C. m , −1.
D. m = 1.
Câu 11. Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − 1 = 0. Viết phương trình
mặt cầu (S ) có tâm I(2; 1; −1) và tiếp xúc với (P).
1
B. (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = 3.
A. (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = .
3
1
C. (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = .
D. (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = 3.
3
Câu 12. Cho x, y, z là ba số thực khác 0 thỏa mãn 2 x = 5y = 10−z . Giá trị của biểu thức A = xy + yz +
zxbằng?
A. 0.
B. 1.
C. 2.
D. 3.

Trang 1/6 Mã đề 001


Câu 13. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x2 và đường thẳng y = x.
1
1
2
A. .
B. 1.
C. − .
D. .
6
6
3
√ sin 2x
Câu 14. Giá trị lớn nhất của hàm số y = ( π)
trên√R bằng?
D. 0.
A. π.
B. 1.
C. π.
Câu 15. Cho hình phẳng (H) giới hạn bởi các đường y = x2 ; y = 0; x = 2 Tính thể tích V của khối tròn
xoay tạo thành khi quay (H) quanh trục Ox.
8

32π
32
A. V = .
B. V =
.

C. V =
.
D. V = .
3
3
5
5
Câu 16. Cắt một hình nón bởi một mặt phẳng đi qua trục của nó, ta được thiết diện là tam giác vng
với cạnh√huyền bằng 2a. Tính thể
√ tích của khối nón.
π 2.a3
2π.a3
π.a3
4π 2.a3
.
B.
.
C.
.
D.
.
A.
3
3
3
3
Câu 17. Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s).
Tính quãng đường S mà chất điểm đó đi được sau 2 giây kể từ lúc bắt đầu chuyển động.
A. S = 20 (m).
B. S = 12 (m).

C. S = 24 (m).
D. S = 28 (m).
Câu 18. Cắt mặt trụ bởi một mặt phẳng tạo với trục của nó một góc nhọn ta được
A. Đường tròn.
B. Đường parabol.
C. Đường hypebol.
D. Đường elip.
Câu 19. Hàm số nào sau đây khơng có cực trị?
A. y = x3 − 6x2 + 12x − 7.
C. y = x2 .

B. y = cos x.
D. y = x4 + 3x2 + 2.

Câu 20. Trong không gian với hệ tọa độ Oxyz cho điểm A(5; 5; 2),mặt phẳng (P):z − 2 = 0, mặt cầu
(S )có tâm I(3; 4; 6) và bán kính R = 5.Viết phương trình đường thẳng đi qua A, nằm trong (P) và cắt (S)
theo dây cung dài nhất.
A. x = 5 + 2ty = 5 + tz = 2.
B. x = 5 + ty = 5 + 2tz = 2.
C. x = 3 + 2ty = 4 + tz = 6.
D. x = 5 + 2ty = 5 + tz = 2 − 4t.
Câu 21. Hàm số nào sau đây đồng biến trên R?
A. y = tan

√ x.
C. y = x2 + x + 1 − x2 − x + 1.

B. y = x2 .
D. y = x4 + 3x2 + 2.
π

π
x
π

F(
)
=
).
Câu 22. Biết F(x) là một nguyên hàm của hàm số f (x) =
.
Tìm
F(

cos2 x
3
4
3
π
π ln 2
π
π ln 2
π
π ln 2
π
π ln 2
A. F( ) = +
.
B. F( ) = −
.
C. F( ) = −

.
D. F( ) = +
.
4
4
2
4
4
2
4
3
2
4
3
2
Câu 23. Tìm tất cả các giá trị của tham số m để hàm số y = xe−x + mx đồng biến trên R?
A. m > 2e .
B. m > 2.
C. m ≥ e−2 .
D. m > e2 .
Câu 24. Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD là hình bình hành. Hình chiếu vng góc của A′
lên mặt phẳng (ABCD)trùng với giao điểm của AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc giữa mặt
bên (ABB′ A′ ) và mặt đáy bằng 450 . Tính thể tích khối tứ diện ACB′ D′ theo a.
A. 100a3 .
B. 60a3 .
C. 30a3 .
D. 20a3 .

Câu 25. Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + 5 = 0. Tọa độ của một
véc tơ pháp tuyến của (P) là

A. (2; −1; 2).
B. (−2; 1; 2).
C. (2; −1; −2).
D. (−2; −1; 2).
x−3
y−6
z−1
Câu 26. Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1 :
=
=

−2
2
1
d2 : x = ty = −tz = 2 (t ∈ R). Đường thẳng đi qua điểm A(0; 1; 1), vng góc với d1 và cắt d2 có phương
trình là:
x y−1 z−1
x
y−1 z−1
A. =
=
.
B.
=
=
.
1
−3
4
−1

3
4
y
z−1
x
y−1 z−1
x−1
C.
=
=
.
D.
=
=
.
−1
−3
4
−1
−3
4
Trang 2/6 Mã đề 001


1 3 2
x −2x +3x+1
Câu 27. Cho hàm số f (x) = e 3
. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng(−∞; 1) và đồng biến trên khoảng(3; +∞).
B. Hàm số đồng biến trên khoảng(−∞; 1) và nghịch biến trên khoảng(3; +∞).

C. Hàm số nghịch biến trên khoảng (−∞; 1) và (3; +∞).
D. Hàm số đồng biến trên khoảng (−∞; 1) và (3; +∞).

Câu 28. Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCD với A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0), D(1;
Độ dài đường cao AH của tứ diện ABCD là:
A. 7 .
B. 9 .
C. 5 .
D. 6.
Câu 29. Trong hệ tọa độ Oxyz, cho A(1;
kính AB có phương trình
√ 2; 3), B(−3; 0; 1). Mặt2 cầu đường
2
2
2
2
A. (x + 1) + (y − 1) + (z − 2) = 6.
B. (x + 1) + (y − 1) + (z − 2)2 = 6.
2
2
2
C. (x + 1) + (y − 1) + (z − 2) = 24.
D. (x − 1)2 + (y + 1)2 + (z + 2)2 = 6.
Câu 30. Cho a > 1, a , 0 Tìm mệnh đề đúng trong các mệnh đề sau:
A. loga xn = log 1 x , (x > 0, n , 0).
B. loga x có nghĩa với ∀x ∈ R.
an
C. loga 1 = a và loga a = 0.

D. loga (xy) = loga x.loga y.


Câu 31. Cho một hình trụ (T ) có chiều cao và bán kính đều bằng 3a Một hình vng ABCD có hai cạnh
AB, CD lần lượt là hai dây cung của hai đường tròn đáy, cạnh AD, BC khơng phải là đường sinh của
hình trụ (T ). Tính cạnh của hình √
vng này.

3a 10
A. 3a 5.
B.
.
C. 6a.
D. 3a.
2
Câu 32. Tính tổng tất cả các nghiệm của phương trình 6.22x − 13.6 x + 6.32x = 0
13
A. .
B. 1.
C. −6.
D. 0.
6



3
Câu 33. Xác định tập tất cả các giá trị của tham số m để phương trình


2x3 + x2 − 3x −
2
có 4 nghiệm phân biệt.

19
3
A. S = (−3; −1) ∪ (1; 2).
B. S = (−5; − ) ∪ ( ; 6).
4
4
3
19
3
19
C. S = (−2; − ) ∪ ( ; 7).
D. S = (−2; − ) ∪ ( ; 6).
4
4
4
4







1



m



=

− 1



2
2



Câu 34. Cho bất phương trình 3 2(x−1)+1 − 3 x ≤ x2 − 4x + 3. Tìm mệnh đề đúng.
A. Bất phương trình đúng với mọi x ∈ (4; +∞).
B. Bất phương trình có nghiệm thuộc khoảng (−∞; 1).
C. Bất phương trình vơ nghiệm.
D. Bất phương trình đúng với mọi x ∈ [ 1; 3].
Câu 35. Một hình trụ (T ) có diện tích xung quanh bằng 4π và thiết diện qua trục của hình trụ này là một
hình vng. Diện tích tồn phần của (T ) là
A. 8π.
B. 10π.
C. 12π.
D. 6π.
3x
Câu 36. Tìm tất cả các giá trị của tham số mđể đồ thị hàm số y =
cắt đường thẳng y = x + m tại
x−2
7
hai điểm phân biệt A, B sao cho tam giác OAB nhận G(1; ) làm trọng tâm.
3
A. m = −2.

B. Không tồn tại m.
C. m = 2.
D. m = 1.
Câu 37. Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) và mặt
phẳng (P) : x+2y+z−4 = 0. Giả sử M(a; b; c) là một điểm trên mặt phẳng (P) sao cho MA2 +MB2 +2MC 2
nhỏ nhất. Tính tổng a + b + c.
A. 4.
B. 3.
C. 1.
D. 2.
Trang 3/6 Mã đề 001


Câu 38. Cho hàm số y = x2 − x + m có đồ thị là (C). Tìm tất cả các giá trị của tham số m để tiếp tuyến
của đồ thị (C) tại giao điểm của (C) với trục Oy đi qua điểm B(1; 2).
A. m = 3.
B. m = 4.
C. m = 2.
D. m = 1.
Câu 39. Trong khơng gian với hệ trục tọa độ Oxyz, tìm bán kính của mặt cầu (S ) có phương trình
x2 + y2 + √
z2 − 4x − 6y + 2z − 1 = 0.

A. R = 15.
B. R = 3.
C. R = 14.
D. R = 4.
Câu 40. Cho mặt cầu (S ) có bán kính bằng R = 5, một hình trụ (T )có hai đường trịn đáy nằm trên mặt
cầu (S ). Thể
√ nhất bằng bao nhiêu. √


√ tích của khối trụ (T ) lớn
500π 3
250π 3
125π 3
400π 3
.
B.
.
C.
.
D.
.
A.
9
9
9
3
Câu 41. Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC là tam giác tù, AB = AC. Góc tạo bởi hai
đường thẳng AA′ và BC ′ bằng 300 ; khoảng cách giữa AA′ và BC ′ bằng a; góc giữa hai mặt phẳng
′ ′ ′
(ABB′ A′ √
) và (ACC ′ A′ ) bằng 600 . Tính
√ thể tích khối lăng trụ
√ABC.A B C .

3
3
3
A. 3a 3.

B. 6a 3.
C. 9a 3.
D. 4a3 3.
−u = (2; 1; 3),→
−v = (−1; 4; 3). Tìm tọa độ của véc
Câu 42. Trong khơng gian với hệ trục tọa độ Oxyz cho →
−u + 3→
−v .
tơ 2→
−u + 3→
−v = (1; 14; 15).
−u + 3→
−v = (3; 14; 16).
A. 2→
B. 2→







C. 2 u + 3 v = (2; 14; 14).
D. 2 u + 3−v = (1; 13; 16).

2x − x2 + 3
có số đường tiệm cận đứng là:
Câu 43. Đồ thị hàm số y =
x2 − 1
A. 1.

B. 2.
C. 3.
D. 0.
Câu 44. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng
x = −1; x = 2.
23
29
25
27
A. .
B.
.
C. .
D. .
4
4
4
4
Câu 45. Gọi l, h, R lần lượt là độ dài đường sinh, chiều cao và bán kính đáy của hình nón (N). Diện tích
tồn phầnS tp của hình nón (N) bằng
A. S tp = πRl + πR2 .
B. S tp = 2πRl + 2πR2 . C. S tp = πRh + πR2 .
D. S tp = πRl + 2πR2 .
Câu 46. Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính của mặt cầu (S ) có phương trình
x2 + y2 + z2 − 4x − 6y + 2z − 1 = 0.√

A. R = 3.
B. R = 15.
C. R = 4.
D. R = 14.

Câu 47. Một hình trụ (T ) có diện tích xung quanh bằng 4π và thiết diện qua trục của hình trụ này là một
hình vng. Diện tích tồn phần của (T ) là
A. 8π.
B. 6π.
C. 10π.
D. 12π.
Câu 48. Hàm số y = x4 − 4x2 + 1 đồng biến trên khoảng nào trong các khoảng sau đây.
A. (1; 5).
B. (−3; 0).
C. (−1; 1).
D. (3; 5).
Câu 49. Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) và tiếp
xúc với mặt phẳng (P) : 2x + y − 2z + 1 = 0.
A. (x − 1)2 + (y − 2)2 + (z − 4)2 = 1.
B. (x − 1)2 + (y − 2)2 + (z − 4)2 = 3.
2
2
2
C. (x − 1) + (y − 2) + (z − 4) = 2.
D. (x − 1)2 + (y + 2)2 + (z − 4)2 = 1.
Câu 50. Chọn mệnh đề đúng trong các mệnh đề sau:
R3
R2
R3
2
2
A. |x − 2x|dx = (x − 2x)dx − (x2 − 2x)dx.
1

B.


R3

1

|x2 − 2x|dx = −

1

C.

R3
1

2

R2

(x2 − 2x)dx +

1

(x2 − 2x)dx.

2

R2

R3


1

2

|x2 − 2x|dx = (x2 − 2x)dx +

R3

(x2 − 2x)dx.
Trang 4/6 Mã đề 001


D.

R3
1

R2
R3
|x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx.
1

2

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 5/6 Mã đề 001



×