TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {4; 3}.
B. {3; 4}.
C. {3; 3}.
D. {5; 3}.
Câu 2. [1] Cho a > 0, a , 1 .Giá trị của biểu thức a
bằng
√
1
C. 25.
D. 5.
A. 5.
B. .
5
Câu 3. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là
√
√
a3
a3 3
a3 3
3
A.
.
B. a .
C.
.
D.
.
3
2
6
Câu 4. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (0; 2).
B. R.
C. (2; +∞).
D. (−∞; 1).
log √a 5
Câu 5. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −2 ≤ m ≤ 2.
B. −3 ≤ m ≤ 3.
C. m ≤ 3.
D. m ≥ 3.
Câu 6. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 20 triệu đồng.
B. 2, 25 triệu đồng.
C. 3, 03 triệu đồng.
D. 2, 22 triệu đồng.
Câu 7. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
.
C. log2 a = loga 2.
D. log2 a =
.
A. log2 a = − loga 2.
B. log2 a =
log2 a
loga 2
x+3
Câu 8. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. Vô số.
B. 3.
C. 1.
D. 2.
Câu 9. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. 3.
B. −3.
C. 0.
D. −6.
√3
4
2
Câu 10. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a bằng
5
2
7
5
A. a 8 .
B. a 3 .
C. a 3 .
D. a 3 .
Câu 11. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 11.
B. 4.
C. 12.
D. 10.
d = 30◦ , biết S BC là tam giác đều
Câu 12. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
16
26
9
13
Câu 13. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 6 mặt.
C. 4 mặt.
D. 10 mặt.
1
Câu 14. [1] Giá trị của biểu thức log √3
bằng
10
1
1
A. 3.
B. −3.
C. − .
D. .
3
3
Trang 1/10 Mã đề 1
Câu 15. [1] Biết log6
A. 108.
√
a = 2 thì log6 a bằng
B. 6.
C. 36.
D. 4.
Câu 16. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng (S AB). Thiết diện của
√mặt phẳng (AIC) có diện
√tích là
√ hình chóp S .ABCD với
a2 7
a2 5
a2 2
11a2
.
B.
.
C.
.
D.
.
A.
32
8
16
4
Câu 17. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (1; +∞).
B. Hàm số nghịch biến trên khoảng (−∞; 0).
C. Hàm số nghịch biến trên khoảng (0; 1).
D. Hàm số đồng biến trên khoảng (1; 2).
Câu 18. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 4.
B. ln 10.
C. ln 12.
D. ln 14.
2
x − 12x + 35
Câu 19. Tính lim
x→5
25 − 5x
2
2
B. +∞.
C. − .
D. −∞.
A. .
5
5
Câu 20. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 12.
B.
.
C. 27.
D. 18.
2
Câu 21. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 1.
B. m > 0.
C. m ≥ 0.
D. m > −1.
Câu 22. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là
√
√
√
3
2a 3
4a3 3
a3 3
5a3 3
A.
.
B.
.
C.
.
D.
.
3
3
2
3
Câu 23. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
ab
1
ab
A. √
.
B. √
.
C. √
.
D. 2
.
a + b2
2 a2 + b2
a2 + b2
a2 + b2
Câu 24. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 9 mặt.
C. 3 mặt.
D. 4 mặt.
Z 3
x
a
a
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
Câu 25. Cho I =
√
d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 4.
B. P = 28.
C. P = 16.
D. P = −2.
Câu 26. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối tứ diện đều.
C. Khối 12 mặt đều.
D. Khối lập phương.
Câu 27. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng
√
a
a 3
a
A. .
B.
.
C. .
D. a.
3
2
2
x2 − 9
Câu 28. Tính lim
x→3 x − 3
A. 6.
B. +∞.
C. 3.
D. −3.
Trang 2/10 Mã đề 1
Câu 29. [2]√Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2√+ 1)2 x trên [0; 1] bằng 8
A. m = ± 2.
B. m = ±3.
C. m = ± 3.
D. m = ±1.
Câu 30. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
A. f 0 (0) = 10.
B. f 0 (0) = 1.
Câu 31. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối bát diện đều.
1
.
ln 10
C. f 0 (0) = ln 10.
D. f 0 (0) =
C. Khối tứ diện đều.
D. Khối 12 mặt đều.
Câu 32.√Biểu thức nào sau đây khơng có nghĩa
√
−3
B. (−1)−1 .
C.
−1.
D. 0−1 .
A. (− 2)0 .
2mx + 1
1
Câu 33. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. 1.
B. 0.
C. −5.
D. −2.
Câu 34. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. e2016 .
B. 0.
C. 22016 .
D. 1.
Câu 35. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|
√
√
√
√
12 17
B. 68.
C.
.
D. 34.
A. 5.
17
!
5 − 12x
Câu 36. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. 2.
B. 3.
C. Vơ nghiệm.
D. 1.
Câu 37.
√ Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18.
A. 3 3.
B. 9.
C. 8.
D. 27.
Câu 38. Phát biểu nào sau đây là sai?
1
A. lim √ = 0.
n
C. lim un = c (Với un = c là hằng số).
1
= 0 với k > 1.
nk
D. lim qn = 1 với |q| > 1.
B. lim
Câu 39. Trong các mệnh đề dưới đây, mệnh đề nào!sai?
un
A. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
!vn
un
B. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
C. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
D. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
Câu 40. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (1; +∞).
C. (−∞; −1).
D. (−1; 1).
Câu 41. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm cạnh.
B. Bốn cạnh.
C. Hai cạnh.
D. Ba cạnh.
Câu 42. Khối đa diện đều loại {3; 5} có số cạnh
A. 8.
B. 12.
C. 30.
D. 20.
mx − 4
Câu 43. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 45.
B. 67.
C. 26.
D. 34.
Trang 3/10 Mã đề 1
Câu 44. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. e.
B. −2 + 2 ln 2.
C. 1.
D. 4 − 2 ln 2.
Câu 45. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 0.
B. 3.
C. 1.
D. 2.
Câu 46. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = [2; 1].
B. D = R \ {1; 2}.
C. D = (−2; 1).
D. D = R.
2n + 1
Câu 47. Tính giới hạn lim
3n + 2
2
1
3
C. .
D. .
A. 0.
B. .
2
3
2
2
Câu 48. [1] Tập nghiệm của phương trình log2 (x − 6x + 7) = log2 (x − 3) là
A. {5}.
B. {2}.
C. {5; 2}.
D. {3}.
2
Câu 49. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 + 2e
1 + 2e
1 − 2e
A. m =
.
B. m =
.
C. m =
.
D. m =
.
4 − 2e
4e + 2
4 − 2e
4e + 2
Câu 50. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng
là
√
√ góc với đáy, S C = a 3. Thể tích khối chóp S 3.ABCD
a
a3
a3 3
3
.
B. a3 .
C.
.
D.
.
A.
9
3
3
x
Câu 51.
√ Tính diện tích hình phẳng giới hạn bởi các đường y = xe , y = 0, x = 1.
3
1
3
A.
.
B. .
C. .
D. 1.
2
2
2
Câu 52. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 3 đỉnh, 3 cạnh, 3 mặt. B. 4 đỉnh, 6 cạnh, 4 mặt. C. 4 đỉnh, 8 cạnh, 4 mặt. D. 6 đỉnh, 6 cạnh, 4 mặt.
Câu 53. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (II) đúng.
B. Cả hai câu trên sai.
C. Cả hai câu trên đúng. D. Chỉ có (I) đúng.
Câu 54. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−1; 3].
B. [−3; 1].
C. (−∞; −3].
D. [1; +∞).
Câu 55. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
B. 4.
C. .
D. .
A. .
4
8
2
Câu 56. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
Trang 4/10 Mã đề 1
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (II) đúng.
B. Chỉ có (I) đúng.
Câu 57. Tính lim
A. +∞.
2n − 3
bằng
2n2 + 3n + 1
B. 1.
C. Cả hai đều sai.
D. Cả hai đều đúng.
C. 0.
D. −∞.
Câu 58. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ông muốn hoàn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng khơng đổi trong thời gian ơng A hồn nợ.
100.(1, 01)3
(1, 01)3
triệu.
B.
m
=
triệu.
A. m =
(1, 01)3 − 1
3
100.1, 03
120.(1, 12)3
C. m =
triệu.
D. m =
triệu.
3
(1, 12)3 − 1
!4x
!2−x
2
3
Câu 59. Tập các số x thỏa mãn
≤
là
#
" 3
! 2
"
!
#
2
2
2
2
A. −∞; .
B. − ; +∞ .
C.
; +∞ .
D. −∞; .
5
3
5
3
2
Câu 60. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 4.
B. 2.
C. 3.
D. 5.
Câu 61. Khối đa diện đều loại {3; 3} có số cạnh
A. 4.
B. 6.
D. 5.
C. 8.
Câu 62. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim− f (x) = f (b).
B. lim− f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→a
x→b
C. lim+ f (x) = f (a) và lim+ f (x) = f (b).
x→b
D. lim+ f (x) = f (a) và lim− f (x) = f (b).
x→a
x→a
x→b
x→b
q
Câu 63. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].
B. m ∈ [0; 1].
C. m ∈ [0; 2].
D. m ∈ [−1; 0].
Câu 64. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 1.
B. 3.
C. 0.
D. 2.
1
5
Câu 65. [2] Tập xác định của hàm số y = (x − 1) là
A. D = R.
B. D = (−∞; 1).
C. D = R \ {1}.
D. D = (1; +∞).
Câu 66. Hàm số nào sau đây khơng có cực trị
x−2
A. y =
.
B. y = x4 − 2x + 1.
2x + 1
1
D. y = x + .
x
C. y = x3 − 3x.
2
Câu 67. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
1
1
A. 2 .
B.
.
C. √ .
3
e
2e
2 e
Câu 68. Tính lim
A. 2.
5
n+3
B. 3.
C. 0.
D.
2
.
e3
D. 1.
Trang 5/10 Mã đề 1
Câu 69.
√ [4-1246d] Trong tất cả các số phức z thỏa mãn |z√− i| = 1. Tìm giá trị lớn nhất của |z|
A. 3.
B. 1.
C. 5.
D. 2.
!
1
1
1
Câu 70. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
5
3
A. +∞.
B. 2.
C. .
D. .
2
2
!
3n + 2
+ a2 − 4a = 0. Tổng các phần tử
Câu 71. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
n+2
của S bằng
A. 5.
B. 2.
C. 3.
D. 4.
12 + 22 + · · · + n2
Câu 72. [3-1133d] Tính lim
n3
2
1
A. .
B. .
3
3
√
x2 + 3x + 5
Câu 73. Tính giới hạn lim
x→−∞
4x − 1
1
A. 0.
B. − .
4
C. +∞.
D. 0.
C. 1.
D.
1
.
4
Câu 74. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
Câu 75. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 7 mặt.
C. 6 mặt.
D. 9 mặt.
Câu 76. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 3.
B. 1.
C. 2.
D. Vô số.
Câu 77. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 21.
B. P = −21.
C. P = −10.
D. P = 10.
log 2x
là
Câu 78. [1229d] Đạo hàm của hàm số y =
x2
1
1 − 2 log 2x
1 − 2 ln 2x
1 − 4 ln 2x
A. y0 = 3
.
B. y0 =
.
C. y0 = 3
.
D. y0 =
.
3
2x ln 10
x
x ln 10
2x3 ln 10
Câu 79. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 80.
bằng 1 là:
√ Thể tích của khối lăng√trụ tam giác đều có cạnh √
3
3
3
A.
.
B.
.
C.
.
2
4
12
D.
3
.
4
Câu 81. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
S .ABCD là
của AD, biết S H ⊥ (ABCD), S A = a 5. Thể tích khối chóp √
√
3
3
3
2a
4a
4a 3
2a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Câu 82. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 18 lần.
B. Tăng gấp 9 lần.
C. Tăng gấp 27 lần.
D. Tăng gấp 3 lần.
Trang 6/10 Mã đề 1
Câu 83.
[12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23
√ i
h
3
có ít nhất một nghiệm thuộc đoạn 1; 3
A. m ∈ [0; 4].
B. m ∈ [−1; 0].
C. m ∈ [0; 1].
q
x+ log23 x + 1+4m−1 = 0
D. m ∈ [0; 2].
Câu 84. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lập phương.
B. Khối tứ diện.
C. Khối lăng trụ tam giác.
D. Khối bát diện đều.
d = 300 .
Câu 85. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
0
Độ dài cạnh bên
√ CC = 3a. Thể tích V 3của
√ khối lăng trụ đã cho.
√
a3 3
3a 3
A. V =
.
B. V =
.
C. V = 3a3 3.
D. V = 6a3 .
2
2
1
Câu 86. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
A. xy0 = −ey + 1.
B. xy0 = ey − 1.
C. xy0 = −ey − 1.
D. xy0 = ey + 1.
Câu 87. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 1; m = 1.
B. M = e−2 − 2; m = 1.
2
−2
C. M = e − 2; m = e + 2.
D. M = e−2 + 2; m = 1.
Câu 88. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 24.
B. 23.
C. 22.
D. 21.
√
Câu 89. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 2 nghiệm.
B. Vô nghiệm.
C. 1 nghiệm.
D. 3 nghiệm.
x+2
đồng biến trên khoảng
Câu 90. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x + 5m
(−∞; −10)?
A. Vô số.
B. 3.
C. 2.
D. 1.
x−2
Câu 91. Tính lim
x→+∞ x + 3
2
A. − .
B. 1.
C. 2.
D. −3.
3
Câu 92. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4
=
=
và d0 :
=
=
đường thẳng d :
2
3
−5
3
−2
−1
x y z−1
x y−2 z−3
A. = =
.
B. =
=
.
1 1
1
2
3
−1
x−2 y+2 z−3
x−2 y−2 z−3
C.
=
=
.
D.
=
=
.
2
3
4
2
2
2
Câu 93. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 3).
B. (2; 4; 4).
C. (1; 3; 2).
D. (2; 4; 6).
Câu 94. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≤ .
B. m < .
C. m ≥ .
D. m > .
4
4
4
4
Câu 95. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị nhỏ nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới
" đây?
!
5
5
A. [3; 4).
B. 2; .
C.
;3 .
D. (1; 2).
2
2
√
ab.
Trang 7/10 Mã đề 1
0 0 0 0
0
Câu 96.√ [2] Cho hình lâp phương
√ bằng
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
a 3
a 6
a 6
a 6
.
B.
.
C.
.
D.
.
A.
3
2
7
2
Câu 97. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 12 mặt đều.
C. Khối 20 mặt đều.
Z 2
ln(x + 1)
Câu 98. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. −3.
B. 3.
C. 1.
D. Khối tứ diện đều.
D. 0.
Câu 99. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
A. lim [ f (x)g(x)] = ab.
x→+∞
f (x) a
= .
C. lim
x→+∞ g(x)
b
B. lim [ f (x) + g(x)] = a + b.
x→+∞
D. lim [ f (x) − g(x)] = a − b.
x→+∞
x−3 x−2 x−1
x
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [2; +∞).
B. (−∞; 2].
C. (2; +∞).
D. (−∞; 2).
Câu 100. [4-1213d] Cho hai hàm số y =
Câu 101.
Các khẳng định nàoZsau đây là sai?
Z
f (x)dx = F(x) +C ⇒
A.
Z
C.
f (x)dx = F(x) + C ⇒
f (u)dx = F(u) +C. B.
Z
f (t)dt = F(t) + C. D.
Z
Z
k f (x)dx = k
f (x)dx, k là hằng số.
!0
f (x)dx = f (x).
Câu 102. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim
A. 1.
B. −∞.
Z
C. +∞.
un
bằng
vn
D. 0.
Câu 103. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m < 3.
C. m ≤ 3.
D. m > 3.
Câu 104. Khối đa diện đều loại {5; 3} có số mặt
A. 30.
B. 20.
C. 12.
D. 8.
Câu 105. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa
√ hai đường thẳng S B và√AD bằng
√
√
a 2
a 2
A.
.
B.
.
C. a 3.
D. a 2.
2
3
Câu 106. Khối đa diện đều loại {3; 4} có số cạnh
A. 12.
B. 6.
C. 8.
D. 10.
Câu 107. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. 2.
C. Vô nghiệm.
D. 3.
1 3
x − 2x2 + 3x − 1.
3
C. (1; 3).
D. (−∞; 1) và (3; +∞).
Câu 108. Tìm tất cả các khoảng đồng biến của hàm số y =
A. (1; +∞).
B. (−∞; 3).
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥
Câu 109. Cho hình chóp S .ABC có BAC
(ABC). Thể
√ tích khối chóp S .ABC
√là
√
3
3
√
a 2
a 3
a3 3
A.
.
B.
.
C.
.
D. 2a2 2.
24
24
12
Trang 8/10 Mã đề 1
Câu 110. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt√bên (S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√ là
3
3
3
3
8a 3
4a 3
8a 3
a 3
.
B.
.
C.
.
D.
.
A.
9
9
9
3
x=t
Câu 111. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :
y = −1 và hai mặt phẳng (P), (Q)
z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
B. (x − 3)2 + (y + 1)2 + (z + 3)2 = .
A. (x + 3)2 + (y + 1)2 + (z + 3)2 = .
4
4
9
9
2
2
2
2
2
2
D. (x + 3) + (y + 1) + (z − 3) = .
C. (x − 3) + (y − 1) + (z − 3) = .
4
4
Câu 112. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1202 m.
B. 1134 m.
C. 6510 m.
D. 2400 m.
√
Câu 113. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là
√
√
√
a3 3
a3 3
a3
3
.
B. a 3.
C.
.
D.
.
A.
4
12
3
Câu 114. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 8.
B. 4.
C. 3.
D. 6.
Câu 115. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 6 cạnh, 6 mặt. C. 6 đỉnh, 9 cạnh, 5 mặt. D. 5 đỉnh, 9 cạnh, 6 mặt.
Câu 116. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −2e2 .
B. −e2 .
C. 2e2 .
D. 2e4 .
! x3 −3mx2 +m
1
Câu 117. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m ∈ (0; +∞).
B. m , 0.
C. m ∈ R.
D. m = 0.
Câu 118. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 3.
B. 2.
C. 1.
D. 7.
Câu 119. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A. a3 .
B.
.
C.
.
D.
.
12
6
24
x+1
Câu 120. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
A. .
B. 1.
C. .
D. .
3
6
2
Câu 121. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m > 3.
B. m ≥ 3.
C. m ≤ 3.
D. m < 3.
Trang 9/10 Mã đề 1
[ = 60◦ , S O
Câu 122. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√
√ với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S BC) bằng
√
2a 57
a 57
a 57
D.
A.
.
B.
.
C. a 57.
.
17
19
19
Câu 123. Nếu khơng sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Bốn tứ diện đều và một hình chóp tam giác đều.
B. Một tứ diện đều và bốn hình chóp tam giác đều.
C. Năm hình chóp tam giác đều, khơng có tứ diện đều.
D. Năm tứ diện đều.
Câu 124. Khối đa diện đều loại {5; 3} có số cạnh
A. 20.
B. 30.
C. 8.
D. 12.
Câu 125.
[1233d-2] ZMệnh đề nào sau đây sai?
Z
A.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z
B.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
C.
Z
Z
Z
D.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Câu 126. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 3.
B. 10.
C. 12.
D. 27.
Câu 127. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {5; 3}.
B. {4; 3}.
C. {3; 4}.
D. {3; 5}.
Câu 128. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (0; 1).
B. (−1; 0).
C. (−∞; −1) và (0; +∞). D. (−∞; 0) và (1; +∞).
Câu 129. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 2.
B. 1.
C. 3.
Câu 130. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −1.
B. m = −3.
C. m = 0.
D. +∞.
D. m = −2.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
D
3.
5.
C
6.
D
B
13.
15.
D
B
10.
B
16.
C
19. A
21.
23.
8.
D
B
27.
B
18.
D
20.
D
22.
C
24.
C
D
30.
31. A
32.
B
34.
C
35.
37. A
B
C
D
B
36.
D
38.
D
40.
D
41.
D
42.
43.
D
44. A
45.
D
46.
47.
D
28. A
29. A
39.
C
26.
25. A
33.
D
14.
B
17.
D
12.
C
11.
C
4. A
B
7.
9.
2.
C
D
48. A
C
49.
D
50.
51.
D
52.
B
54.
B
53.
C
55. A
D
56. A
57.
58. A
C
59.
B
60. A
61.
B
62.
63.
D
64.
65.
D
66. A
67. A
68.
1
D
C
C
69.
D
70.
B
71.
D
72.
B
73.
D
75.
77.
D
74.
B
B
79.
D
76.
C
78.
C
80.
B
81.
B
82.
83.
B
84.
B
85.
B
86.
B
87.
B
88.
C
90.
C
89. A
91.
B
92. A
93.
D
95.
97.
94. A
96. A
C
B
98. A
C
99.
100. A
101. A
102.
103. A
104.
105. A
106. A
107.
110.
B
113.
D
C
115.
117.
D
C
108.
B
109. A
111.
C
D
D
B
112.
C
114.
C
116.
B
118.
B
119.
B
120.
121.
B
122.
B
123.
B
124.
B
125. A
127.
C
126. A
D
128.
130.
129. A
2
B
D