Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (26)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (151.78 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 11 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
n2 + 1
1
A. lim un = 0.
B. lim un = .
2
C. Dãy số un khơng có giới hạn khi n → +∞.
D. lim un = 1.

Câu 1. [3-1132d] Cho dãy số (un ) với un =

Câu 2. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −7.
B. −5.
C. −3.

D. Không tồn tại.

Câu 3. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (−1; −7).
B. (0; −2).


C. (1; −3).

D. (2; 2).

Câu 4. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường thẳng
BB0 và AC 0 bằng
1
ab
1
ab
A. √
.
B. √
.
C. √
.
D. 2
.
a + b2
2 a2 + b2
a2 + b2
a2 + b2
Câu 5. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây thứ
5 đến giây thứ 15 là bao nhiêu?
A. 1202 m.
B. 6510 m.
C. 2400 m.
D. 1134 m.
Câu 6. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).

A. (−∞; −3].
B. [−1; 3].
C. [−3; 1].
D. [1; +∞).
Câu 7. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 3).
B. (1; 3; 2).
C. (2; 4; 6).
D. (2; 4; 4).
Câu 8. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = R \ {1; 2}.
B. D = [2; 1].
2

C. D = (−2; 1).

D. D = R.

Câu 9. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A.
.
B.
.
C.

.
D. a3 .
6
12
24
Câu 10. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
1
ab
ab
A. √
.
D. √
.
B. √
.
C. 2
.
2
a +b
a2 + b2
a2 + b2
2 a2 + b2
Câu 11. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {4; 3}.
B. {3; 3}.
C. {3; 4}.
Câu 12. Tính lim
A. 1.


2n2 − 1
3n6 + n4
B.

2
.
3

C. 2.

D. {5; 3}.

D. 0.

Câu 13. Cho số phức z thỏa mãn |z +
√ 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.
A. |z| = 17.
B. |z| = 17.
C. |z| = 10.
D. |z| = 10.
Trang 1/11 Mã đề 1


Câu 14. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
B. Cả ba câu trên đều sai.
C. F(x) = G(x) trên khoảng (a; b).
D. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.

1
Câu 15. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 luôn đồng biến trên
3

một đoạn có độ dài bằng 24.
A. m = −3, m = 4.
B. −3 ≤ m ≤ 4.
C. m = 4.
D. m = −3.
Câu 16. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng
1
A. 5.
B. .
C. 25.
5



D.

5.

Câu 17. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 8 đỉnh, 10 cạnh, 6 mặt.
Câu 18. Tính lim
A. 1.


n−1
n2 + 2

B. 0.

C. 3.

D. 2.

Câu 19. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; 8).
B. A(−4; −8)(.
C. A(4; −8).
D. A(4; 8).
Câu 20. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 4.

B. 2.

C. 1.

Câu 21.
Z Trong các khẳng định sau, khẳng định nào sai? Z
0dx = C, C là hằng số.

A.
Z
C.


1
dx = ln |x| + C, C là hằng số.
x

1
3|x−1|

B.
Z
D.

= 3m − 2 có nghiệm duy

D. 3.
xα dx =

xα+1
+ C, C là hằng số.
α+1

dx = x + C, C là hằng số.

Câu 22. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 3.
B. 1.
C. Vô số.
D. 2.
x
9

Câu 23. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. 1.
B. 2.
C. −1.
D. .
2
Câu 24. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 2ac
3b + 3ac
A.
.
B.
.
C.
.
c+2
c+3
c+1

D.

3b + 2ac
.
c+2

Câu 25. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )

A. P = −10.
B. P = −21.
C. P = 10.
D. P = 21.
Câu 26. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là


3
3
a 3
a 2
a3 3
a3 6
A.
.
B.
.
C.
.
D.
.
48
16
24
48
Trang 2/11 Mã đề 1



Câu 27. [3] Biết rằng giá trị lớn nhất của hàm số y =
số tự nhiên. Tính S = m2 + 2n3
A. S = 24.
B. S = 135.

ln2 x
m
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e

C. S = 32.

D. S = 22.

Câu 28. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 6 mặt.
C. 4 mặt.
D. 3 mặt.
8
Câu 29. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 81.
B. 96.
C. 82.
D. 64.
Câu 30. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).

A. 10 năm.
B. 9 năm.
C. 7 năm.
D. 8 năm.
Câu 31. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 0.
B. 9.

C. 7.

D. 5.

Câu 32. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. Vô nghiệm.
C. 2.
D. 3.
Câu 33. Biểu thức nào sau đây khơng
√ 0 có nghĩa
−1
A. 0 .
B. (− 2) .

C.


−1.

−3


D. (−1)−1 .

Câu 34. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 10 .(3)40
C 40 .(3)10
C 20 .(3)20
C 20 .(3)30
B. 50 50 .
C. 50 50 .
D. 50 50 .
A. 50 50 .
4
4
4
4
x x
0
Câu 35. [2] Cho hàm số f (x) = 2 .5 . Giá trị của f (0) bằng
1
A. f 0 (0) =
.
B. f 0 (0) = 10.
C. f 0 (0) = 1.
D. f 0 (0) = ln 10.
ln 10
Câu 36. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông

cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 5
a3 3
a3 5
A.
.
B.
.
C.
.
D.
.
6
12
4
12
Câu 37. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; +∞).
B. (4; 6, 5].
C. (−∞; 6, 5).
D. [6, 5; +∞).
tan x + m
Câu 38. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4

A. (−∞; 0] ∪ (1; +∞). B. (−∞; −1) ∪ (1; +∞). C. [0; +∞).
D. (1; +∞).
mx − 4
Câu 39. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 26.
B. 67.
C. 34.
D. 45.
2
1−n
Câu 40. [1] Tính lim 2
bằng?
2n + 1
1
1
1
A. .
B. .
C. 0.
D. − .
3
2
2
Câu 41. Khối đa diện đều loại {5; 3} có số đỉnh
A. 8.
B. 20.
C. 30.
D. 12.

Trang 3/11 Mã đề 1


Câu 42. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x+1 y−4 z−4
x−2 y−3 z+4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x y z−1
x−2 y−2 z−3
=
=
.
B. = =
.
A.
2
3
4
1 1

1
x−2 y+2 z−3
x y−2 z−3
C.
=
=
.
D. =
=
.
2
2
2
2
3
−1
2

Câu 43. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log3 2.
B. 2 − log2 3.
C. 3 − log2 3.

D. 1 − log2 3.
2

Câu 44. Tổng diện tích các mặt của một khối lập phương bằng 54cm .Thể tích của khối lập phương đó
là:
A. 27cm3 .
B. 46cm3 .

C. 72cm3 .
D. 64cm3 .
log 2x
Câu 45. [1229d] Đạo hàm của hàm số y =

x2
1 − 2 ln 2x
1 − 2 log 2x
1
1 − 4 ln 2x
A. y0 = 3
.
B. y0 =
.
C. y0 = 3
.
D. y0 =
.
3
x ln 10
x
2x ln 10
2x3 ln 10
Câu 46. Khối đa diện đều loại {3; 5} có số đỉnh
A. 30.
B. 20.
C. 8.
D. 12.
Câu 47. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.

5
5
D. − < m < 0.
A. m ≤ 0.
B. m ≥ 0.
C. m > − .
4
4
Câu 48. Khối đa diện đều loại {5; 3} có số cạnh
A. 12.
B. 20.
C. 30.
D. 8.
!
1
1
1
Câu 49. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
5
3
A. +∞.
B. .
C. 2.
D. .
2
2
Câu 50. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi

A. d nằm trên P hoặc d ⊥ P.
B. d song song với (P).
C. d nằm trên P.
D. d ⊥ P.
Câu 51. [1] Giá trị của biểu thức 9log3 12 bằng
A. 4.
B. 24.

C. 2.

D. 144.

Câu 52. Giá√trị cực đại của hàm số y√= x3 − 3x2 − 3x + 2

A. −3 + 4 2.
B. 3 + 4 2.
C. −3 − 4 2.


D. 3 − 4 2.

Câu 53. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Một mặt.
B. Bốn mặt.
C. Hai mặt.

D. Ba mặt.

Câu 54. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên

(S BC) và (S AD) cùng
hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD


√ là
4a3 3
a3 3
8a3 3
8a3 3
A.
.
B.
.
C.
.
D.
.
9
9
9
3
Câu 55. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. −6.
B. 5.
C. −5.

D. 6.

Câu 56. Tìm m để hàm số y = x − 3mx + 3m có 2 điểm cực trị.
A. m > 0.

B. m = 0.
C. m , 0.

D. m < 0.

2

3

2

2

Câu 57. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
Trang 4/11 Mã đề 1


(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (I) sai.

B. Khơng có câu nào C. Câu (II) sai.
sai.
Câu 58. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 4.
B. −2.
C. −4.


D. Câu (III) sai.

D. 2.

Câu 59. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 2; m = 1.
B. M = e−2 + 1; m = 1.
2
−2
C. M = e − 2; m = e + 2.
D. M = e−2 − 2; m = 1.
Câu 60. Trong các khẳng định sau, khẳng định nào sai?
A. Cả ba đáp án trên.
B. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.

C. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
D. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
Câu 61. [2]√Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2√+ 1)2 x trên [0; 1] bằng 8
B. m = ±1.
C. m = ± 2.
D. m = ±3.
A. m = ± 3.
Câu 62. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + 2 sin 2x.
B. 1 − sin 2x.
C. −1 + sin x cos x.
D. 1 + 2 sin 2x.
1
a
, với a, b ∈ Z. Giá trị của a + b là

Câu 63. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
4 b ln 3
A. 7.
B. 1.
C. 4.
D. 2.
Câu 64. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√M + m
√ của hàm số. Khi đó tổng

A. 8 3.
B. 8 2.
C. 16.
D. 7 3.
Câu 65. Trong các mệnh đề dưới đây, mệnh đề nào
! sai?
un
A. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
B. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
C. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
v
n
!
un

= 0.
D. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
vn
Câu 66. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Khơng thay đổi.
B. Giảm đi n lần.
C. Tăng lên (n − 1) lần. D. Tăng lên n lần.
2n − 3
Câu 67. Tính lim 2
bằng
2n + 3n + 1
A. 0.
B. +∞.
C. −∞.
D. 1.
Câu 68. [1] Đạo hàm của hàm số y = 2 x là
1
1
A. y0 = x
.
B. y0 = 2 x . ln x.
C. y0 =
.
2 . ln x
ln 2
Câu 69. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 2e.
B. 3.

C. .
e

D. y0 = 2 x . ln 2.
D. 2e + 1.
Trang 5/11 Mã đề 1


Câu 70. [1] Tính lim
A. 1.

1 − 2n
bằng?
3n + 1
1
B. .
3

2
C. − .
3

log 2x
Câu 71. [3-1229d] Đạo hàm của hàm số y =

x2
1 − 2 log 2x
1
1 − 2 ln 2x
.

B. y0 =
.
C. y0 = 3
.
A. y0 = 3
3
x ln 10
x
2x ln 10
Câu 72. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 8 mặt.
C. 10 mặt.

D.

2
.
3

D. y0 =

1 − 4 ln 2x
.
2x3 ln 10

D. 4 mặt.

Câu 73. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?

A. n3 lần.
B. 2n3 lần.
C. 2n2 lần.
D. n3 lần.
Câu 74. Giá trị của lim(2x2 − 3x + 1) là
x→1

A. 2.

B. 1.

C. 0.

D. +∞.

Câu 75. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
3
9
A. .
B. 3.
C. 1.
D. .
2
2
Câu 76. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 13.
B. 13.
C. 2020.
D. log2 2020.

π
Câu 77. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu √
thức T = a + b 3.

B. T = 2.
C. T = 4.
D. T = 3 3 + 1.
A. T = 2 3.
Câu 78. Thể tích của khối lăng√trụ tam giác đều có cạnh √
bằng 1 là:

3
3
3
3
A. .
B.
.
C.
.
D.
.
4
2
12
4


Câu 79. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vô số.
B. 62.
C. 63.
D. 64.
Câu 80. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 3.
B. 1.
C. 2.

D. 0.

Câu 81. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 220 triệu.
B. 216 triệu.
C. 210 triệu.
D. 212 triệu.
Câu 82. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 23.
B. 21.
C. 22.
D. 24.
Câu 83. Khối đa diện loại {4; 3} có tên gọi là gì?

A. Khối 12 mặt đều.
B. Khối bát diện đều.

C. Khối lập phương.

D. Khối tứ diện đều.
Trang 6/11 Mã đề 1


2mx + 1
1
Câu 84. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. 0.
B. −5.
C. −2.
D. 1.
2
2
2
1 + 2 + ··· + n
Câu 85. [3-1133d] Tính lim
n3
1
2
A. .
B. +∞.
C. 0.

D. .
3
3
1
Câu 86. Hàm số y = x + có giá trị cực đại là
x
A. −1.
B. −2.
C. 2.
D. 1.
Câu 87. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 3.
B. 2.
C. 5.

D. 1.

Câu 88. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √

a3 3
a3 3
a3
a3 3
.
B.
.
C.
.

D.
.
A.
12
8
4
4
[ = 60◦ , S A ⊥ (ABCD).
Câu 89. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh
√ S C là a. Thể tích khối chóp S .ABCD là

3
3

a 3
a 2
a3 2
3
A.
.
B.
.
C. a 3.
.
D.
6
12
4
Câu 90. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam

giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của

√ hình chóp S .ABCD với
√mặt phẳng (AIC) có diện tích

2
2
2
2
a 2
a 5
11a
a 7
.
B.
.
C.
.
D.
.
A.
8
4
16
32
Câu 91. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng




a 2
a 2
A.
D. a 2.
.
B.
.
C. a 3.
2
3
2
Câu 92. [2] Tìm m để giá trị nhỏ nhất√của hàm số y = 2x3 + (m√
+ 1)2 x trên [0; 1] bằng 2
A. m = ±3.
B. m = ± 2.
C. m = ± 3.
D. m = ±1.
!
!
!
x
4
1
2
2016
Câu 93. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f

+ ··· + f
4 +2
2017
2017
2017
2016
.
A. T = 2016.
B. T = 2017.
C. T = 1008.
D. T =
2017

Câu 94. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
A. .
B. −3.
C. − .
D. 3.
3
3
2−n
Câu 95. Giá trị của giới hạn lim
bằng
n+1
A. 0.
B. −1.
C. 1.
D. 2.

Câu 96. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác S AB đều và nằm trong mặt
Thể tích khối chóp
√ phẳng vng góc với 3(ABCD).

√ S .ABCD là
3
3

a
2
a
3
a
3
A. a3 3.
B.
.
C.
.
D.
.
2
4
2
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 97. Cho hình chóp S .ABC có BAC
Thể tích khối chóp S .ABC là





a3 3
a3 3
a3 2
2
A. 2a 2.
B.
.
C.
.
D.
.
12
24
24
Trang 7/11 Mã đề 1


1

Câu 98. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (−∞; 1).
B. D = R.
C. D = (1; +∞).

D. D = R \ {1}.

Câu 99. Dãy số nào có giới hạn bằng 0?!

n
n3 − 3n
−2
A. un =
.
B. un =
.
n+1
3

!n
6
D. un =
.
5

C. un = n − 4n.
2

Câu 100. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba mặt.
B. Năm mặt.
C. Hai mặt.

D. Bốn mặt.

Câu 101. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (0; 2).
C. (2; +∞).


D. R.

Câu 102. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
B. y = log 14 x.
A. y = log π4 x.


D. y = loga x trong đó a = 3 − 2.

Câu 103. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả
bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vơ số.
B. 62.
C. 64.
D. 63.
C. y = log √2 x.

Câu 104. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi
M, N và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng




14 3
20 3
.
C. 8 3.
.

B.
D.
A. 6 3.
3
3
2

2

sin x
Câu 105. [3-c] Giá trị nhỏ nhất √
và giá trị lớn nhất của hàm
+ 2cos x lần lượt
√ số f (x) = 2
√ là
A. 2 và 3.
B. 2 2 và 3.
C. 2 và 3.
D. 2 và 2 2.
2
4
3
Câu 106. Cho z là nghiệm của phương trình

√ x + x + 1 = 0. Tính P = z + 2z − z
−1 + i 3
−1 − i 3
.
C. P = 2.
D. P =

.
A. P = 2i.
B. P =
2
2
Câu 107. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −2.
B. m = −1.
C. m = 0.
D. m = −3.
1
Câu 108. [1] Giá trị của biểu thức log √3
bằng
10
1
1
A. −3.
B. .
C. 3.
D. − .
3
3
3
Câu 109. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = −18.
B. y(−2) = 6.
C. y(−2) = 22.
D. y(−2) = 2.
2


Câu 110. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 3.
B. 4.
C. 5.
Câu 111. Khối đa diện đều loại {3; 5} có số mặt
A. 8.
B. 20.
Câu 112. [2] Phương trình log4 (x + 1)2 + 2 = log √2
A. Vô nghiệm.
B. 3 nghiệm.

D. 2.

C. 30.
D. 12.

4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
C. 1 nghiệm.
D. 2 nghiệm.

Câu 113. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Đường phân giác góc phần tư thứ nhất.
B. Hai đường phân giác y = x và y = −x của các góc tọa độ.
C. Trục thực.
D. Trục ảo.
Trang 8/11 Mã đề 1


Câu 114. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường

thẳng S B bằng

a
a
a 3
A. a.
B. .
C. .
D.
.
2
3
2
!
3n + 2
2
Câu 115. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 2.
B. 4.
C. 5.
D. 3.
Câu 116. √
Tính mơ đun của số phức√z biết (1 + 2i)z2 = 3 + 4i.
4
A. |z| = 5.
B. |z| = 5.
C. |z| = 5.



D. |z| = 2 5.

Câu 117. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 2).
B. Hàm số đồng biến trên khoảng (0; 2).
C. Hàm số nghịch biến trên khoảng (0; 2).
D. Hàm số đồng biến trên khoảng (0; +∞).
Câu 118. Tính lim
x→5

A. −∞.

x2 − 12x + 35
25 − 5x
2
B. .
5

2
C. − .
5

D. +∞.

Câu 119. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).

(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. Cả ba mệnh đề.

B. (II) và (III).

C. (I) và (III).

D. (I) và (II).

Câu 120. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vô nghiệm.
B. 1.
C. 3.
D. 2.
Câu 121. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3.
Tính f (2) + f (4)?
A. 11.
B. 10.
C. 12.
D. 4.
2
3
7n − 2n + 1
Câu 122. Tính lim 3
3n + 2n2 + 1
2
7
A. - .
B. 1.

C. 0.
D. .
3
3
Câu 123. Khối chóp ngũ giác có số cạnh là
A. 9 cạnh.
B. 11 cạnh.

C. 10 cạnh.

D. 12 cạnh.

x+2
Câu 124. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 3.
B. Vô số.
C. 2.
D. 1.
Câu 125. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm
0
A đến đường



√ thẳng BD bằng
b a2 + c2
a b2 + c2

abc b2 + c2
c a2 + b2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Trang 9/11 Mã đề 1


Câu 126. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
.
C. 5.
A. 68.
B.
D. 34.
17

x+1
Câu 127. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
A. .
B. .
C. .
D. 1.
2
3
6
Câu 128. Khối đa diện đều loại {3; 4} có số cạnh
A. 12.
B. 8.
C. 10.
D. 6.
2

Câu 129. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 6.
B. 5.
C. 7.

D. 8.

Câu 130. Khối đa diện đều loại {3; 3} có số đỉnh
A. 2.

B. 3.

D. 5.

C. 4.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/11 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

B

2.

3.

B

4.

5.

B


6.

9.

10.

B
D

11.
C

13.
15. A

D

D

14.

D

B

D

28.

C


30.

D
B

32.

B

C

34.

35.

D

36.

B

39.

C

D
B

38.


D

40.

D

41.

B

42.

43.

B

44. A

B

46.

45. A
47.

C

48.


49.

C

50. A

51.

D
C
B

C

54.

C

56.

C

58.

59.

D

52. A


B

55.

61.

C

26. A

33. A

57.

B

24. A

29. A

53.

C

22.

B

27.


37.

B

20.

23. A

31.

D

12.

18.

C

19.

25.

C

16.

17.
21.

B


8.

C

7.

D

D

B

60.

C

62. A

C

63. A

64.

65. A

66.

67. A


68.
1

C
B
D


69.

70.

B

71. A

72. A

73. A

74.

75. A

76. A
C

77.
79.


B

81.

D

83.
B

D

D

80.

D
C

86.

B

88.

B

90. A
D


92.

91. A
93.
95.

78.

84. A

C

89.

C

82.

85. A
87.

C

94. A

C

D

96.


B

97.

D

C

98.

99.

B

100. A

101.

B

102.

103.

B

104. A

105.


B

106.

107. A

108.

109. A

110.

C
C
D
B

111.

B

112.

113.

B

114. A


115.

B

116.

B

117.

B

118.

B

120.

B

119.

D

121.

C

122. A


123.

C

124.

125.

B

126.

127.

C

128. A

129.

C

130.

2

D

C
B

C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×