TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
1
Câu 1. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R.
B. D = (1; +∞).
C. D = (−∞; 1).
D. D = R \ {1}.
Câu 2. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. .
B. .
C. .
D. 4.
2
8
4
3
2
x
Câu 3. [2] Tìm
√ m để giá trị lớn nhất của hàm số y = 2x + (m + 1)2 trên [0; 1] bằng 8 √
A. m = ± 3.
B. m = ±1.
C. m = ±3.
D. m = ± 2.
Câu 4. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
A. .
B. .
C. 6.
D. 9.
2
2
Câu 5.√ Tính diện tích hình phẳng giới hạn bởi các đường y = xe x , y = 0, x = 1.
1
3
3
.
B. 1.
C. .
D. .
A.
2
2
2
3
2
Câu 6. Cho hàm số y = x + 3x . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên khoảng (−2; 1).
B. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
C. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
Câu 7. Khối đa diện đều loại {3; 3} có số đỉnh
A. 2.
B. 4.
C. 5.
Câu 8. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 6 mặt.
C. 4 mặt.
Câu 9. [2] Tổng các nghiệm của phương trình 2
A. −5.
B. 6.
x2 +2x
D. 3.
D. 5 mặt.
= 82−x là
C. 5.
D. −6.
x+2
đồng biến trên khoảng
Câu 10. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x + 5m
(−∞; −10)?
A. 1.
B. 2.
C. 3.
D. Vô số.
Câu 11. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 12.
B. ln 10.
C. ln 14.
D. ln 4.
1
Câu 12. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 luôn đồng biến trên
3
√
một đoạn có độ dài bằng 24.
A. m = 4.
B. m = −3.
C. −3 ≤ m ≤ 4.
D. m = −3, m = 4.
Câu 13. [1] Giá trị của biểu thức 9log3 12 bằng
A. 4.
B. 2.
C. 144.
D. 24.
Câu 14. [2-c] Giá trị nhỏ nhất của hàm số y = (x − 2)e trên đoạn [−1; 2] là
A. −2e2 .
B. 2e4 .
C. −e2 .
D. 2e2 .
2
Câu 15. [1] Đạo hàm của làm số y = log x là
1
1
A. y0 =
.
B.
.
x ln 10
10 ln x
2x
1
C. y0 = .
x
D. y0 =
ln 10
.
x
Trang 1/10 Mã đề 1
2
Câu 16. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3 + (m√
+ 1)2 x trên [0; 1] bằng 2√
D. m = ± 3.
A. m = ±1.
B. m = ±3.
C. m = ± 2.
Câu 17. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 4).
B. (2; 4; 3).
C. (1; 3; 2).
D. (2; 4; 6).
x−1 y z+1
= =
và
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 10x − 7y + 13z + 3 = 0.
B. 2x + y − z = 0.
C. 2x − y + 2z − 1 = 0.
D. −x + 6y + 4z + 5 = 0.
Câu 18. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
B thuộc (C), đoạn thẳng AB có độ dài bằng
√ đều ABI có hai đỉnh A, √
√
A. 6.
B. 2 3.
C. 2.
D. 2 2.
Câu 19. [3-1214d] Cho hàm số y =
Câu 20. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 22.
B. y(−2) = 6.
C. y(−2) = 2.
D. y(−2) = −18.
Câu 21. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √
√
a3 6
a3 3
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
24
24
48
8
d = 300 .
Câu 22. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vng tại A. BC = 2a, ABC
Độ dài cạnh bên CC 0 = 3a. Thể tích V của
√ khối lăng trụ đã cho.
√
3
√
3a 3
a3 3
3
3
B. V =
.
C. V = 6a .
D. V =
.
A. V = 3a 3.
2
2
Câu 23. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11
9
A. 5.
B. 7.
C. .
D.
.
2
2
√
√
Câu 24. Phần thực√và phần ảo của số √
phức z = 2 − 1 − 3i lần lượt l √
√
B. Phần thực là 1√− 2, phần ảo là − √3.
A. Phần thực là √2, phần ảo là 1 − √3.
C. Phần thực là 2 − 1, phần ảo là 3.
D. Phần thực là 2 − 1, phần ảo là − 3.
Câu 25. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A.
.
B. a3 .
C.
.
D.
.
6
24
12
Câu 26. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 4.
B. −2.
C. 2.
D. −4.
Câu 27. Khối lập phương thuộc loại
A. {3; 3}.
B. {4; 3}.
D. {5; 3}.
C. {3; 4}.
Câu 28. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1202 m.
B. 6510 m.
C. 1134 m.
D. 2400 m.
Trang 2/10 Mã đề 1
Câu 29. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim f (x) = f (a).
B. lim+ f (x) = lim− f (x) = a.
x→a
C. f (x) có giới hạn hữu hạn khi x → a.
x→a
x→a
x→a
x→a
D. lim+ f (x) = lim− f (x) = +∞.
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 30. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là
√
√
√
a3 2
a3 3
a3 3
2
.
B. 2a 2.
C.
.
D.
.
A.
12
24
24
Câu 31. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [1; 2].
B. (1; 2).
C. (−∞; +∞).
D. [−1; 2).
Câu 32. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường
√ thẳng BD bằng
√
√
√
a b2 + c2
c a2 + b2
b a2 + c2
abc b2 + c2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
√
Câu 33. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. 64.
C. Vơ số.
D. 62.
log2 240 log2 15
−
+ log2 1 bằng
Câu 34. [1-c] Giá trị biểu thức
log3,75 2 log60 2
A. 1.
B. −8.
C. 4.
D. 3.
Câu 35. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 5.
B. V = 3.
C. V = 4.
D. V = 6.
Câu 36. Khối đa diện đều loại {5; 3} có số mặt
A. 30.
B. 20.
C. 8.
D. 12.
Câu 37. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; −1) và (0; +∞). B. (0; 1).
C. (−∞; 0) và (1; +∞). D. (−1; 0).
x2 − 12x + 35
Câu 38. Tính lim
x→5
25 − 5x
2
2
A. − .
B. .
5
5
Câu 39.√Biểu thức nào sau đây √
khơng có nghĩa
−3
0
B.
−1.
A. (− 2) .
!4x
!2−x
2
3
Câu 40. Tập các số x thỏa mãn
≤
là
3
2
#
#
2
2
A. −∞; .
B. −∞; .
3
5
C. −∞.
D. +∞.
C. (−1)−1 .
D. 0−1 .
"
!
2
C.
; +∞ .
5
"
!
2
D. − ; +∞ .
3
Câu 41. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD
√ là
3
10a 3
A. 20a3 .
B. 10a3 .
C.
.
D. 40a3 .
3
Câu 42. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 32π.
B. 16π.
C. V = 4π.
D. 8π.
Trang 3/10 Mã đề 1
Câu 43. [1] Tính lim
A. +∞.
x→3
x−3
bằng?
x+3
B. −∞.
C. 1.
Câu 44. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. Không tồn tại.
B. 0.
C. 13.
D. 0.
D. 9.
Câu 45. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 9 mặt.
C. 6 mặt.
D. 4 mặt.
3a
Câu 46. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng √
a 2
a
2a
a
A.
.
B. .
C.
.
D. .
3
4
3
3
3
2
Câu 47. Giá√trị cực đại của hàm số y =
√ x − 3x − 3x + 2
√
√
A. −3 + 4 2.
B. −3 − 4 2.
C. 3 + 4 2.
D. 3 − 4 2.
!2x−1
!2−x
3
3
Câu 48. Tập các số x thỏa mãn
≤
là
5
5
A. [1; +∞).
B. (+∞; −∞).
C. [3; +∞).
D. (−∞; 1].
x+3
Câu 49. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. Vô số.
B. 2.
C. 3.
D. 1.
Câu 50. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc√với đáy và S C = a 3. √
Thể tích khối chóp S .ABC√là
√
3
3
2a 6
a 6
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
9
12
4
2
log7 16
Câu 51. [1-c] Giá trị của biểu thức
bằng
log7 15 − log7 15
30
A. 2.
B. −4.
C. −2.
D. 4.
√
Câu 52. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √
√
√
3
a 6
a3 2
a3 6
a 6
A.
.
B.
.
C.
.
D.
.
6
18
6
36
Câu 53.
đề nào sau đây
Z [1233d-2] Mệnh Z
Z sai?
[ f (x) − g(x)]dx =
A.
f (x)dx −
g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
C.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z
D.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
B.
Câu 54. Giá trị của lim(2x2 − 3x + 1) là
A. +∞.
x→1
B. 0.
C. 2.
D. 1.
Câu 55. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối bát diện đều.
B. Khối tứ diện.
C. Khối lập phương.
D. Khối lăng trụ tam giác.
Trang 4/10 Mã đề 1
a
1
Câu 56. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 4.
B. 7.
C. 2.
D. 1.
Câu 57. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 2.
B. 4.
C. 3.
D. 1.
Câu 58. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng
√
√
√
a 6
a 6
a 6
.
B.
.
C. a 6.
.
A.
D.
3
6
2
Câu 59. Cho hình chóp S .ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là
√
√
3
3
a 2
a 6
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
16
48
48
24
Câu 60. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = [2; 1].
B. D = (−2; 1).
C. D = R.
2
D. D = R \ {1; 2}.
! x3 −3mx2 +m
1
Câu 61. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m , 0.
B. m = 0.
C. m ∈ R.
D. m ∈ (0; +∞).
Câu 62. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −5.
B. x = 0.
C. x = −8.
D. x = −2.
Câu 63. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng khơng đổi trong thời gian ơng A hồn nợ.
100.1, 03
(1, 01)3
triệu.
B. m =
triệu.
A. m =
3
(1, 01) − 1
3
100.(1, 01)3
120.(1, 12)3
C. m =
triệu.
D. m =
triệu.
3
(1, 12)3 − 1
Câu 64. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−1; 3].
B. [1; +∞).
C. (−∞; −3].
D. [−3; 1].
Câu 65. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng
√
1
A. 25.
B. .
C. 5.
D. 5.
5
log(mx)
Câu 66. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m ≤ 0.
B. m < 0 ∨ m = 4.
C. m < 0.
D. m < 0 ∨ m > 4.
√
Trang 5/10 Mã đề 1
√
Câu 67. √Xác định phần ảo của số phức z = ( 2 + 3i)2 √
A. −6 2.
B. 7.
C. 6 2.
D. −7.
Câu 68. [1225d] Tìm tham số thực m để phương trình log2 (5 − 1) log4 (2.5 − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m < 3.
C. m ≤ 3.
D. m > 3.
x
x
Câu 69. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun z.
√
√
√
√
5 13
A. 26.
B.
.
C. 2.
D. 2 13.
13
Câu 70. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của
nó
A. Khơng thay đổi.
B. Tăng lên (n − 1) lần. C. Tăng lên n lần.
D. Giảm đi n lần.
Câu 71. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
9
13
5
23
A.
.
B.
.
C. − .
D. −
.
25
100
16
100
4x + 1
Câu 72. [1] Tính lim
bằng?
x→−∞ x + 1
A. 2.
B. −4.
C. −1.
D. 4.
Câu 73. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 3, 55.
B. 20.
C. 15, 36.
D. 24.
Câu 74. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
8a
5a
2a
a
B.
.
C.
.
D.
.
A. .
9
9
9
9
√3
4
Câu 75. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
7
5
2
5
A. a 8 .
B. a 3 .
C. a 3 .
D. a 3 .
Câu 76. Khối đa diện đều loại {4; 3} có số mặt
A. 8.
B. 12.
C. 6.
D. 10.
Câu 77. Trong các mệnh đề dưới đây, mệnh đề nào
! sai?
un
= +∞.
A. Nếu lim un = a > 0 và lim vn = 0 thì lim
vn
B. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
C. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
v
n
!
un
D. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
Câu 78. Khối đa diện đều loại {3; 5} có số cạnh
A. 12.
B. 8.
C. 20.
D. 30.
Câu 79. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là
√
√
√
3
5a 3
a3 3
2a3 3
4a3 3
A.
.
B.
.
C.
.
D.
.
3
2
3
3
Trang 6/10 Mã đề 1
Câu 80. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = x + ln x.
B. y0 = 1 + ln x.
C. y0 = ln x − 1.
D. y0 = 1 − ln x.
Câu 81. Nếu khơng sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm hình chóp tam giác đều, khơng có tứ diện đều.
B. Năm tứ diện đều.
C. Một tứ diện đều và bốn hình chóp tam giác đều.
D. Bốn tứ diện đều và một hình chóp tam giác đều.
Câu 82. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Khơng có.
B. Có một hoặc hai.
C. Có một.
D. Có hai.
2mx + 1
1
Câu 83. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. −5.
B. −2.
C. 1.
D. 0.
!
x+1
Câu 84. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2017
4035
2016
A.
.
B.
.
C.
.
D. 2017.
2018
2018
2017
Câu 85. Tính thể tích khối lập phương biết tổng diện tích √
tất cả các mặt bằng 18.
A. 8.
B. 9.
C. 3 3.
D. 27.
Câu 86. Tứ diện đều thuộc loại
A. {3; 4}.
B. {5; 3}.
Câu 87.
√ Tìm giá trị lớn nhất của√hàm số y =
A. 2 3.
B. 3 2.
√
C. {3; 3}.
√
x + 3 + 6 −√x
C. 2 + 3.
Câu 88. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (−1; −7).
B. (0; −2).
C. (2; 2).
D. {4; 3}.
D. 3.
D. (1; −3).
Câu 89. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
B. Số cạnh của khối chóp bằng số mặt của khối chóp.
C. Số đỉnh của khối chóp bằng số mặt của khối chóp.
D. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
12 + 22 + · · · + n2
n3
1
2
A. +∞.
B. .
C. .
3
3
3
2
2
Câu 91. Tìm m để hàm số y = x − 3mx + 3m có 2 điểm cực trị.
A. m > 0.
B. m < 0.
C. m = 0.
Câu 90. [3-1133d] Tính lim
D. 0.
D. m , 0.
un
Câu 92. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. 1.
B. −∞.
C. 0.
D. +∞.
Câu 93. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối bát diện đều.
C. Khối tứ diện đều.
D. Khối 12 mặt đều.
Câu 94. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích khối chóp S .ABCD là √
√
√
a3 3
2a3 3
a3 3
3
A.
.
B. a 3.
C.
.
D.
.
3
6
3
Trang 7/10 Mã đề 1
Câu 95. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (II).
B. (I) và (III).
C. Cả ba mệnh đề.
D. (II) và (III).
Câu 96. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng
√
√
√
a 2
a 2
B.
.
C. 2a 2.
D.
.
A. a 2.
4
2
Câu 97. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
C. − 2 .
D. − .
A. −e.
B. − .
2e
e
e
√
Câu 98. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√
√ cho là
√
√
πa3 3
πa3 3
πa3 3
πa3 6
A. V =
.
B. V =
.
C. V =
.
D. V =
.
2
6
3
6
Câu 99. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
Câu 100. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d ⊥ P.
B. d nằm trên P hoặc d ⊥ P.
C. d song song với (P).
D. d nằm trên P.
Câu 101. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối bát diện đều. B. Khối lập phương.
C. Khối tứ diện đều.
D. Khối 12 mặt đều.
Câu 102. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 27 lần.
B. Tăng gấp 18 lần.
C. Tăng gấp 3 lần.
D. Tăng gấp 9 lần.
Câu 103. Dãy!số nào có giới hạn bằng 0?
n
n3 − 3n
−2
.
B. un =
.
A. un =
3
n+1
C. un = n − 4n.
2
!n
6
D. un =
.
5
Câu 104. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung
điểm cạnh√AB, biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD
√ là
4a3 3
a3
2a3 3
a3
A.
.
B.
.
C.
.
D.
.
3
6
3
3
Câu 105. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng
√
√
√
√
a 6
A. 2a 6.
B. a 6.
C. a 3.
D.
.
2
Câu 106. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
B. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
Trang 8/10 Mã đề 1
C. Cả ba đáp án trên.
√
D. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
Câu 107. Tính lim
A. −∞.
cos n + sin n
n2 + 1
B. 1.
C. +∞.
D. 0.
Câu 108. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 5
a3 5
a3 5
a3 3
.
B.
.
C.
.
D.
.
A.
12
4
12
6
Câu 109. Khối chóp ngũ giác có số cạnh là
A. 12 cạnh.
B. 10 cạnh.
C. 9 cạnh.
D. 11 cạnh.
Câu 110. [3] Biết rằng giá trị lớn nhất của hàm số y =
các số tự nhiên. Tính S = m2 + 2n3
A. S = 32.
B. S = 135.
m
ln2 x
trên đoạn [1; e3 ] là M = n , trong đó n, m là
x
e
C. S = 24.
D. S = 22.
Câu 111. Trong khơng gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0)
lần lượt là hình
! chiếu của B, C lên các !cạnh AC, AB. Tọa độ hình chiếu của A lên BC là !
7
8
5
; 0; 0 .
; 0; 0 .
; 0; 0 .
B.
C. (2; 0; 0).
D.
A.
3
3
3
Câu 112. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
.
e
d = 60◦ . Đường chéo
Câu 113. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vuông tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0
là
√
√
√
√
4a3 6
2a3 6
a3 6
3
.
B.
.
C. a 6.
.
A.
D.
3
3
3
Câu 114. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình chóp.
B. Hình tam giác.
C. Hình lăng trụ.
D. Hình lập phương.
A. 3.
B. 2e.
C. 2e + 1.
D.
Câu 115. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √
√
a3 3
a3 3
a3
a3 3
.
B.
.
C.
.
D.
.
A.
12
4
8
4
Câu 116. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α
aα
B. aα+β = aα .aβ .
C. aα bα = (ab)α .
D. aαβ = (aα )β .
A. β = a β .
a
Câu 117. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B
√ C là
√
3
a 3
a3 3
a3
A.
.
B.
.
C.
.
D. a3 .
6
2
3
Câu 118. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m > 3.
C. m ≤ 3.
D. m < 3.
Câu 119.
định nào sau đây là sai?
!0
Z Các khẳng
Z
Z
A.
f (x)dx = f (x).
B.
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C.
Z
Z
Z
Z
C.
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C. D.
k f (x)dx = k
f (x)dx, k là hằng số.
Trang 9/10 Mã đề 1
Câu 120. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi
G la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
6
15
9
18
2
Câu 121. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 8.
B. 5.
C. 7.
D. 6.
Câu 122. Tìm giá trị nhỏ nhất của hàm số y = (x − 2x + 3) − 7
A. −5.
B. −7.
C. Khơng tồn tại.
2
2
D. −3.
√
Câu 123. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh
bên S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng
√
√
√
3a
a 38
3a 38
3a 58
.
B.
.
C.
.
D.
.
A.
29
29
29
29
tan x + m
Câu 124. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
π
0; .
4
A. [0; +∞).
B. (−∞; 0] ∪ (1; +∞). C. (−∞; −1) ∪ (1; +∞). D. (1; +∞).
2
Câu 125. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 3.
B. 5.
C. 2.
2n + 1
Câu 126. Tính giới hạn lim
3n + 2
2
1
C. .
A. 0.
B. .
2
3
Câu 127. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể
là:
A. 46cm3 .
B. 72cm3 .
C. 64cm3 .
Câu 128. [1] Tập
! xác định của hàm số y! = log3 (2x + 1) là
!
1
1
1
A. − ; +∞ .
; +∞ .
B. −∞; − .
C.
2
2
2
D. 4.
3
.
2
tích của khối lập phương đó
D.
D. 27cm3 .
!
1
D. −∞; .
2
Câu 129. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 2.
B. 3.
C. Vô số.
D. 1.
Câu 130. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
B. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Z
u0 (x)
C.
dx = log |u(x)| + C.
u(x)
D. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
B
3.
D
4. A
5.
B
6.
7.
B
8.
9. A
10.
11.
C
12.
13.
C
14.
15. A
D
C
B
D
C
18. A
22.
D
25.
B
D
24.
C
23.
D
20.
B
21. A
27.
D
16. A
17.
19.
C
2.
B
29. A
26.
B
28.
B
C
30.
31.
32. A
C
33.
D
34.
D
36.
C
35.
B
37.
D
38.
39.
D
40.
D
43.
D
41. A
44.
46.
B
47. A
C
B
53.
55.
C
48. A
49.
51.
B
C
B
50.
B
52.
B
54.
B
56.
B
B
57.
C
58.
59.
C
60.
C
62.
C
61.
B
63. A
64.
65. A
66.
67.
69.
D
B
68. A
C
70.
B
1
D
71.
72.
D
73.
C
74.
D
75.
B
C
83.
D
85.
80.
B
82.
B
86.
B
C
B
90.
B
D
92.
93.
D
94. A
B
99.
C
100.
102. A
103. A
104. A
D
B
D
108.
B
C
110. A
111.
D
112. A
113.
C
114.
115.
C
116. A
117.
B
118. A
119.
B
121.
B
C
123. A
C
124.
D
C
128. A
130.
C
106.
B
107.
126.
D
98.
101. A
122.
C
96.
95. A
109.
C
88.
91.
105.
D
84. A
C
89.
97.
C
78.
81.
87.
B
76.
77. A
79.
D
125.
D
127.
D
129. A
C
2