TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 11 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 12.
B. ln 10.
C. ln 4.
D. ln 14.
9x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
Câu 2. [2-c] Cho hàm số f (x) = x
9 +3
1
A. 1.
B. 2.
C. −1.
D. .
2
x
y
Câu 3. [4-c] Xét các số thực dương x, y thỏa mãn 2 + 2 = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 18.
B. 27.
C.
.
D. 12.
2
x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
Câu 4. [3-1214d] Cho hàm số y =
x+2
tam giác
AB có độ dài bằng
√ đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng √
√
A. 2 2.
B. 2.
C. 6.
D. 2 3.
Câu 5. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
8a
5a
a
2a
A.
.
B.
.
C. .
D.
.
9
9
9
9
Câu 6. [1] Đạo hàm của làm số y = log x là
1
1
ln 10
1
.
B.
.
C. y0 = .
D. y0 =
.
A. y0 =
x ln 10
10 ln x
x
x
Câu 7. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh
đề nào dưới đây đúng?
!
1
A. Hàm số nghịch biến trên khoảng ; 1 .
B. Hàm số nghịch biến trên khoảng (1; +∞).
3!
!
1
1
C. Hàm số đồng biến trên khoảng ; 1 .
D. Hàm số nghịch biến trên khoảng −∞; .
3
3
Câu 8. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 2.
B. 1.
C. 6.
D. −1.
Câu 9. Cho hai hàm y = f (x), y = g(x)
Z có đạo hàmZtrên R. Phát biểu nào sau đây đúng?
A. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f 0 (x)dx =
g0 (x)dx.
Z
Z
B. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
C. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Câu 10. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
q
Câu 11. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [−1; 0].
B. m ∈ [0; 1].
C. m ∈ [0; 4].
D. m ∈ [0; 2].
Trang 1/11 Mã đề 1
d = 120◦ .
Câu 12. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
A. 3a.
B. 4a.
C. 2a.
D.
2
un
Câu 13. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. 0.
B. −∞.
C. +∞.
D. 1.
Câu 14. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 9 mặt.
C. 4 mặt.
D. 6 mặt.
log 2x
là
Câu 15. [3-1229d] Đạo hàm của hàm số y =
x2
1 − 2 log 2x
1 − 4 ln 2x
1
1 − 2 ln 2x
.
B. y0 =
.
C. y0 =
.
D. y0 = 3
.
A. y0 = 3
3
3
x ln 10
x
2x ln 10
2x ln 10
log7 16
Câu 16. [1-c] Giá trị của biểu thức
bằng
log7 15 − log7 15
30
A. 4.
B. −2.
C. 2.
D. −4.
Câu 17. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; +∞).
B. (−∞; 6, 5).
C. [6, 5; +∞).
D. (4; 6, 5].
Câu 18. Khối đa diện đều loại {3; 3} có số cạnh
A. 8.
B. 4.
D. 6.
C. 5.
Câu 19. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt√bên (S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√ là
8a3 3
4a3 3
8a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
9
9
9
3
Câu 20. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
A. 6.
B. 9.
C. .
D. .
2
2
1 3
Câu 21. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x − mx2 − (m + 6)x + 1 luôn đồng biến trên
3
√
một đoạn có độ dài bằng 24.
A. m = −3, m = 4.
B. m = 4.
C. m = −3.
D. −3 ≤ m ≤ 4.
Câu 22. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 12 mặt đều.
C. Khối tứ diện đều.
D. Khối 20 mặt đều.
Câu 23. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. 6.
B. −6.
C. −5.
D. 5.
Câu 24. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + sin x cos x.
B. −1 + 2 sin 2x.
C. 1 − sin 2x.
D. 1 + 2 sin 2x.
2
Câu 25. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba mặt.
B. Hai mặt.
C. Năm mặt.
2x + 1
Câu 26. Tính giới hạn lim
x→+∞ x + 1
1
A. −1.
B. .
C. 1.
2
Câu 27. Khối đa diện đều loại {3; 4} có số đỉnh
A. 4.
B. 10.
C. 6.
D. Bốn mặt.
D. 2.
D. 8.
Trang 2/11 Mã đề 1
Câu 28. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √
√
3
3
a 6
a3 3
a3 6
a 6
.
B.
.
C.
.
D.
.
A.
8
24
24
48
Câu 29. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Một mặt.
B. Bốn mặt.
C. Hai mặt.
D. Ba mặt.
Câu 30. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tam giác và một hình chóp tứ giác.
B. Hai hình chóp tam giác.
C. Hai hình chóp tứ giác.
D. Một hình chóp tứ giác và một hình chóp ngũ giác.
Câu 31. [1] Tính lim
A.
1
.
3
1 − 2n
bằng?
3n + 1
2
B. − .
3
C.
2
.
3
D. 1.
3
2
Câu 32. Giá
√ trị cực đại của hàm số y =
√ x − 3x − 3x + 2
√
A. 3 − 4 2.
B. −3 + 4 2.
C. 3 + 4 2.
√
D. −3 − 4 2.
Câu 33. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 4 mặt.
C. 3 mặt.
D. 6 mặt.
Câu 34. Bát diện đều thuộc loại
A. {4; 3}.
B. {5; 3}.
D. {3; 3}.
C. {3; 4}.
Câu 35. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = 0.
B. m = −3.
C. m = −2.
D. m = −1.
Câu 36. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
B. y = log √2 x.
A. y = log π4 x.
C. y = log 14 x.
D. y = loga x trong đó a =
√
3 − 2.
Câu 37. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 2).
B. Hàm số nghịch biến trên khoảng (0; 2).
C. Hàm số đồng biến trên khoảng (0; +∞).
D. Hàm số đồng biến trên khoảng (0; 2).
4x + 1
bằng?
x→−∞ x + 1
B. −1.
n−1
Tính lim 2
n +2
B. 1.
x+2
Tính lim
bằng?
x→2
x
B. 1.
Câu 38. [1] Tính lim
A. 4.
Câu 39.
A. 0.
Câu 40.
A. 3.
C. 2.
D. −4.
C. 3.
D. 2.
C. 2.
D. 0.
d = 60◦ . Đường chéo
Câu 41. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0
là
√
√
√
√
2a3 6
4a3 6
a3 6
3
A. a 6.
B.
.
C.
.
D.
.
3
3
3
Trang 3/11 Mã đề 1
x=t
Câu 42. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :
y = −1 và hai mặt phẳng (P), (Q)
z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
B. (x + 3)2 + (y + 1)2 + (z − 3)2 = .
A. (x + 3)2 + (y + 1)2 + (z + 3)2 = .
4
4
9
9
2
2
2
2
2
2
C. (x − 3) + (y + 1) + (z + 3) = .
D. (x − 3) + (y − 1) + (z − 3) = .
4
4
Câu 43.√Thể tích của tứ diện đều √
cạnh bằng a
√
√
a3 2
a3 2
a3 2
a3 2
.
B.
.
C.
.
D.
.
A.
6
12
2
4
Câu 44. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Bát diện đều.
B. Nhị thập diện đều. C. Tứ diện đều.
D. Thập nhị diện đều.
Câu 45. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 12 m.
B. 8 m.
C. 16 m.
D. 24 m.
x+1
Câu 46. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
A. .
B. .
C. 1.
D. .
3
2
6
0 0 0
Câu 47. Cho lăng trụ đều ABC.A B C có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là
√
√
a3 3
a3
a3 3
3
.
C.
.
D.
.
A. a .
B.
2
6
3
log2 240 log2 15
Câu 48. [1-c] Giá trị biểu thức
−
+ log2 1 bằng
log3,75 2 log60 2
A. 3.
B. 1.
C. −8.
D. 4.
Câu 49. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là 4.
B. Phần thực là −1, phần ảo là −4.
C. Phần thực là 4, phần ảo là 1.
D. Phần thực là 4, phần ảo là −1.
1
Câu 50. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2] ∪ [−1; +∞). B. −2 < m < −1.
C. −2 ≤ m ≤ −1.
D. (−∞; −2) ∪ (−1; +∞).
Câu 51. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là
√
√
a3 3
a3 3
a3
a3 3
A.
.
B.
.
C.
.
D.
.
4
8
4
12
Câu 52. Dãy số nào sau đây có giới hạn là 0?
n2 − 2
n2 + n + 1
n2 − 3n
1 − 2n
A. un =
.
B.
u
=
.
C.
u
=
.
D. un =
.
n
n
2
2
2
5n − 3n
(n + 1)
n
5n + n2
Câu 53. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = −18.
B. y(−2) = 6.
C. y(−2) = 2.
D. y(−2) = 22.
Câu 54. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 0, 8.
B. 7, 2.
C. −7, 2.
D. 72.
Trang 4/11 Mã đề 1
Câu 55. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−1; 1).
B. (1; +∞).
C. (−∞; 1).
1
Câu 56. Hàm số y = x + có giá trị cực đại là
x
A. 1.
B. −2.
C. −1.
D. (−∞; −1).
D. 2.
Câu 57. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng khơng đổi trong thời gian ơng A hồn nợ.
120.(1, 12)3
(1, 01)3
triệu.
B. m =
triệu.
A. m =
(1, 01)3 − 1
(1, 12)3 − 1
100.1, 03
100.(1, 01)3
C. m =
triệu.
D. m =
triệu.
3
3
Câu 58. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (II) đúng.
B. Chỉ có (I) đúng.
C. Cả hai câu trên đúng. D. Cả hai câu trên sai.
Câu 59. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
√
Câu 60. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. 63.
C. 62.
D. Vô số.
Câu 61. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4
√
√
√
√
a3 3
a3 3
a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
12
36
6
24
Câu 62. [4-1246d] Trong tất cả các số phức z thỏa mãn |z√− i| = 1. Tìm giá trị lớn nhất
√ của |z|
A. 1.
B. 2.
C. 5.
D. 3.
p
ln x
1
Câu 63. Gọi F(x) là một nguyên hàm của hàm y =
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
8
1
8
1
A. .
B. .
C. .
D. .
9
9
3
3
!
3n + 2
Câu 64. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a2 − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 2.
B. 5.
C. 3.
D. 4.
3a
Câu 65. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng
Trang 5/11 Mã đề 1
√
a 2
B.
.
3
a
2a
.
D.
.
3
3
x−3 x−2 x−1
x
Câu 66. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [2; +∞).
B. (−∞; 2].
C. (−∞; 2).
D. (2; +∞).
a
A. .
4
C.
Câu 67. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. Vô nghiệm.
B. 2 nghiệm.
C. 1 nghiệm.
D. 3 nghiệm.
log 2x
Câu 68. [1229d] Đạo hàm của hàm số y =
là
x2
1
1 − 2 ln 2x
1 − 4 ln 2x
1 − 2 log 2x
A. y0 = 3
.
B. y0 = 3
.
C. y0 =
.
D. y0 =
.
3
2x ln 10
x ln 10
2x ln 10
x3
Câu 69. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết
√ S H ⊥ (ABCD), S A =
√a 5. Thể tích khối chóp3 S .ABCD là
2a3 3
4a3 3
4a
2a3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Câu 70. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 0).
B. Hàm số nghịch biến trên khoảng (0; 1).
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số đồng biến trên khoảng (1; 2).
Câu 71. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?
A. 17 tháng.
B. 18 tháng.
C. 15 tháng.
D. 16 tháng.
Câu 72. [1] Giá trị của biểu thức 9log3 12 bằng
A. 144.
B. 24.
x−2
Câu 73. Tính lim
x→+∞ x + 3
A. 1.
B. −3.
C. 4.
D. 2.
C. 2.
2
D. − .
3
Câu 74. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 2).
B. (−∞; 0) và (2; +∞). C. (0; 2).
D. (0; +∞).
Câu 75. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 0.
B. 2.
C. 1.
D. 3.
Câu 76. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −4.
B. 4.
C. −2.
D. 2.
Câu 77. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 4 mặt. B. 3 đỉnh, 3 cạnh, 3 mặt. C. 4 đỉnh, 8 cạnh, 4 mặt. D. 4 đỉnh, 6 cạnh, 4 mặt.
log(mx)
Câu 78. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m > 4.
B. m < 0 ∨ m = 4.
C. m < 0.
D. m ≤ 0.
0 0 0 0
0
Câu 79.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 3
a 6
a 6
a 6
A.
.
B.
.
C.
.
D.
.
2
2
3
7
Câu 80. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −10.
B. P = 21.
C. P = 10.
D. P = −21.
Trang 6/11 Mã đề 1
2
Câu 81. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 2 − log2 3.
B. 1 − log3 2.
C. 1 − log2 3.
D. 3 − log2 3.
Câu 82. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 7 mặt.
C. 8 mặt.
D. 6 mặt.
Câu 83. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 1587 m.
B. 387 m.
C. 25 m.
D. 27 m.
Câu 84. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lăng trụ.
B. Hình tam giác.
C. Hình chóp.
D. Hình lập phương.
1
Câu 85. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = −e − 1.
B. xy = −e + 1.
C. xy0 = ey − 1.
D. xy0 = ey + 1.
Câu 86. [1] Đạo hàm của hàm số y = 2 x là
1
1
A. y0 =
.
B. y0 = x
.
C. y0 = 2 x . ln x.
D. y0 = 2 x . ln 2.
ln 2
2 . ln x
Câu 87. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = +∞.
B. f (x) có giới hạn hữu hạn khi x → a.
x→a
x→a
C. lim f (x) = f (a).
D. lim+ f (x) = lim− f (x) = a.
x→a
x→a
x→a
1
a
, với a, b ∈ Z. Giá trị của a + b là
Câu 88. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
4 b ln 3
A. 7.
B. 4.
C. 2.
D. 1.
Câu 89. Khối đa diện đều loại {3; 5} có số mặt
A. 12.
B. 20.
√
Câu 90. [1] Biết log6 a = 2 thì log6 a bằng
A. 4.
B. 6.
C. 8.
D. 30.
C. 36.
D. 108.
1
5
Câu 91. [2] Tập xác định của hàm số y = (x − 1) là
A. D = R.
B. D = R \ {1}.
C. D = (1; +∞).
D. D = (−∞; 1).
Câu 92. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 16π.
B. 8π.
C. V = 4π.
D. 32π.
Câu 93. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [1; 2].
B. [−1; 2).
C. (−∞; +∞).
D. (1; 2).
Câu 94. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun √
z.
√
√
√
5 13
.
B. 26.
C. 2 13.
D. 2.
A.
13
Câu 95. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√
√ Thể tích khối chóp S 3.ABC
√ là
√
a3 3
a 3
a3 2
a3 3
A.
.
B.
.
C.
.
D.
.
12
6
12
4
Câu 96. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất khơng thay đổi?
A. 102.424.000.
B. 102.016.000.
C. 102.016.000.
D. 102.423.000.
Trang 7/11 Mã đề 1
Câu 97.
đề nào sai? Z
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh Z
A.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
B.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Z
Z
Z
Z
Z
C.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
D.
f (x)g(x)dx =
f (x)dx g(x)dx.
Câu 98. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
x2 − 9
Câu 99. Tính lim
x→3 x − 3
A. 6.
B. −3.
C. +∞.
D. 3.
x
x+1
x−2 x−1
+
+
+
và y = |x + 1| − x − m (m là tham
Câu 100. [4-1212d] Cho hai hàm số y =
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−3; +∞).
B. (−∞; −3].
C. [−3; +∞).
D. (−∞; −3).
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥
Câu 101. Cho hình chóp S .ABC có BAC
(ABC). Thể
√ tích khối chóp S .ABC
√là
√
3
3
3
√
a 3
3
a
a 2
.
B.
.
C. 2a2 2.
.
D.
A.
24
24
12
1
Câu 102. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 ≤ m ≤ 3.
B. 0 < m ≤ 1.
C. 2 < m ≤ 3.
D. 0 ≤ m ≤ 1.
Câu 103.
có nghĩa
√ Biểu thức nào sau đây không
−3
−1
A.
−1.
B. (−1) .
√
C. (− 2)0 .
D. 0−1 .
Câu 104. Khối lập phương thuộc loại
A. {5; 3}.
B. {3; 3}.
C. {3; 4}.
D. {4; 3}.
C. 0.
D. 5.
Câu 105. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 7.
B. 9.
Câu 106. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là
√
√
3
3
a 2
a3 3
a3 3
a 6
A.
.
B.
.
C.
.
D.
.
48
16
24
48
3
Câu 107. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e5 .
B. e3 .
C. e.
D. e2 .
Câu 108. Khối đa diện đều loại {4; 3} có số đỉnh
A. 8.
B. 4.
C. 10.
D. 6.
Câu 109. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị nhỏ nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới đây?
"
!
5
5
A. [3; 4).
B.
;3 .
C. (1; 2).
D. 2; .
2
2
√
ab.
Câu 110.
Trong các khẳng định sau, khẳng định nào sai?Z
Z
0dx = C, C là hằng số.
A.
Z
C.
xα dx =
xα+1
+ C, C là hằng số.
α+1
1
dx = ln |x| + C, C là hằng số.
x
Z
D.
dx = x + C, C là hằng số.
B.
Trang 8/11 Mã đề 1
Câu 111. Hàm số y =
A. x = 2.
x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 1.
C. x = 0.
D. x = 3.
[ = 60◦ , S A ⊥ (ABCD).
Câu 112. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng khoảng cách từ A đến cạnh
√ S C là a. Thể tích khối
√chóp S .ABCD là
√
3
3
3
√
a
2
a
2
a
3
A. a3 3.
B.
.
C.
.
D.
.
4
12
6
Câu 113. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
A. f 0 (0) =
.
B. f 0 (0) = 1.
C. f 0 (0) = 10.
D. f 0 (0) = ln 10.
ln 10
Câu 114. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 1.
B. 3.
C. 0.
D. 2.
Câu 115. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 0.
B. 22016 .
C. e2016 .
D. 1.
2
2n − 1
Câu 116. Tính lim 6
3n + n4
2
D. 0.
A. 1.
B. 2.
C. .
3
Câu 117. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng là hình lăng trụ đều.
B. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ tứ giác đều là hình lập phương.
Câu 118. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 10 năm.
C. 13 năm.
D. 12 năm.
Câu 119. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m√2 + 1)2 x trên [0; 1] bằng 8√
D. m = ± 3.
A. m = ±3.
B. m = ±1.
C. m = ± 2.
Câu 120. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa
√ hai đường thẳng BD và√S C bằng
√
√
a 6
a 6
a 6
A.
.
B.
.
C.
.
D. a 6.
3
6
2
Câu 121. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (1; 0; 2).
B. ~u = (2; 1; 6).
C. ~u = (3; 4; −4).
D. ~u = (2; 2; −1).
Câu 122. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = ln x − 1.
B. y0 = x + ln x.
C. y0 = 1 − ln x.
D. y0 = 1 + ln x.
Trang 9/11 Mã đề 1
Câu 123. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m , 0.
B. m < 0.
C. m > 0.
D. m = 0.
Câu 124.
hạn là 0?
!n Dãy số nào sau đây có !giới
n
5
1
A.
.
B.
.
3
3
!n
4
D.
.
e
!n
5
C. − .
3
3
2
x
Câu 125. [2]
√ + 1)2 trên [0; 1] bằng 2
√ Tìm m để giá trị nhỏ nhất của hàm số y = 2x + (m
A. m = ± 3.
B. m = ±3.
C. m = ± 2.
D. m = ±1.
Câu 126. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
9
1
1
2
A.
.
B.
.
C. .
D. .
10
10
5
5
!4x
!2−x
2
3
Câu 127. Tập các số x thỏa mãn
≤
là
3 #
2
#
"
!
"
!
2
2
2
2
A. −∞; .
B. −∞; .
C.
; +∞ .
D. − ; +∞ .
3
5
5
3
Câu 128. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
B. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số nghịch biến trên khoảng (−2; 1).
log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m < 0 ∨ m > 4.
D. m ≤ 0.
Câu 129. [1226d] Tìm tham số thực m để phương trình
A. m < 0 ∨ m = 4.
B. m < 0.
Câu 130. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 4 lần.
B. Tăng gấp 8 lần.
C. Tăng gấp 6 lần.
D. Tăng gấp đôi.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/11 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
D
2. A
3. A
4.
5. A
6. A
7. A
8.
9.
B
D
C
10. A
11. A
12.
13. A
14. A
15. A
16.
D
18.
D
20.
D
22.
D
D
17.
19.
B
21. A
C
23.
24.
D
B
26.
25. A
27.
C
D
28.
B
29.
B
30.
B
31.
B
32.
B
34.
36.
C
35.
37.
B
38. A
C
41. A
42.
C
43.
44.
D
45.
46.
D
47.
48.
C
49.
50.
C
51.
52.
D
54.
B
D
B
57. A
B
C
59.
60.
C
61. A
C
63. A
B
D
65.
66. A
68.
C
55. A
C
64.
B
53. A
58.
62.
D
39. A
40.
56.
C
67.
B
69.
1
D
B
C
70.
71.
B
72. A
74.
73. A
B
75. A
77.
C
76.
78.
D
83.
B
D
86.
C
87.
C
89.
90. A
91.
C
93.
B
C
94. A
95. A
96. A
D
97.
100.
101. A
102.
103.
D
98.
99. A
D
B
107. A
B
C
104.
D
106.
D
108. A
109.
B
110.
111.
B
112.
113.
D
115. A
119.
D
85.
88. A
117.
C
81. A
82. A
105.
D
79.
B
80.
84.
D
B
C
C
B
114.
D
116.
D
118.
D
120.
121. A
122.
123. A
124.
B
D
B
125.
D
126. A
127.
D
128.
B
130.
B
129. A
2