Tải bản đầy đủ (.pdf) (13 trang)

Đề ôn toán thpt (156)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (159.2 KB, 13 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều rộng
bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 120 cm2 .
B. 160 cm2 .
C. 1200 cm2 .
D. 160 cm2 .
Câu 2. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ nhất
của |z + 2 + i|




12 17
B.
D. 68.
A. 34.
.
C. 5.
17
Câu 3. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá trị
của hàm số tại x = −2.
A. y(−2) = 22.


B. y(−2) = −18.
C. y(−2) = 6.
D. y(−2) = 2.
Câu 4. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. − < m < 0.
B. m > − .
C. m ≤ 0.
D. m ≥ 0.
4
4
Câu 5. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 8 cạnh, 4 mặt. B. 6 đỉnh, 6 cạnh, 4 mặt. C. 3 đỉnh, 3 cạnh, 3 mặt. D. 4 đỉnh, 6 cạnh, 4 mặt.
Câu 6. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 2.
B. 3.
C. 7.
D. 1.
Câu 7. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
C. .
D. 1.
A. 3.
B. .
2
2

x+2
bằng?
Câu 8. Tính lim
x→2
x
A. 1.
B. 3.
C. 2.
D. 0.
Câu 9. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
2a
8a
5a
a
A.
.
B.
.
C.
.
D. .
9
9
9
9
Câu 10. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn cạnh.
B. Năm cạnh.

C. Hai cạnh.

D. Ba cạnh.

Câu 11. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng



a 3
a 3
2a 3
A.
.
B.
.
C. a 3.
D.
.
2
2
3
Câu 12. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −5.
B. −3.
C. −7.

D. Khơng tồn tại.

Câu 13. [2-c] (Minh họa 2019) Ơng A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn

hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
Trang 1/10 Mã đề 1


5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 25 triệu đồng.
B. 2, 20 triệu đồng.
C. 2, 22 triệu đồng.
D. 3, 03 triệu đồng.
Câu 14. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp đơi.
B. Tăng gấp 8 lần.
C. Tăng gấp 6 lần.
D. Tăng gấp 4 lần.
Câu 15. Biểu thức nào sau đây khơng
√ 0 có nghĩa
−1
A. (−1) .
B. (− 2) .

C.


−1.

−3


D. 0−1 .

Câu 16. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A. −2.
B.
.
C. −7.
D. −4.
27
Câu 17. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp ngữ giác.
B. Hai khối chóp tam giác.
C. Hai khối chóp tứ giác.
D. Một khối chóp tam giác, một khối chóp tứ giác.
Câu 18. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. 3.
C. 1.
D. Vô nghiệm.
Câu 19. [1] Đạo hàm của hàm số y = 2 x là
1
1
.
B. y0 =
.
C. y0 = 2 x . ln x.
D. y0 = 2 x . ln 2.
A. y0 = x
2 . ln x

ln 2
Câu 20.
các khẳng định sau, khẳng định nào sai?
Z Trong
u0 (x)
A.
dx = log |u(x)| + C.
u(x)
B. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
C. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
D. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Câu 21.√Thể tích của tứ diện đều √
cạnh bằng a
3
3
a 2
a 2
A.
.
B.
.
2
4
Câu 22. Khối đa diện đều loại {4; 3} có số mặt
A. 10.
B. 6.


a3 2

C.
.
12


a3 2
D.
.
6

C. 12.

D. 8.

Câu 23. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 6.
B. 3.
C. 8.
D. 4.
2n + 1
Câu 24. Tính giới hạn lim
3n + 2
3
1
2
A. .
B. .
C. .
D. 0.

2
2
3
Câu 25.! Dãy số nào sau đây có giới
!n hạn là 0?
!n
!n
n
4
5
1
5
A.
.
B.
.
C.
.
D. − .
e
3
3
3
Câu 26. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =

. Thể tích khối lăng trụ đã cho bằng
3
Trang 2/10 Mã đề 1



2 3
A. 2.
B.
.
3
Câu 27. Hàm số f có nguyên hàm trên K nếu
A. f (x) liên tục trên K.
C. f (x) có giá trị lớn nhất trên K.


C. 1.

D.

3.

B. f (x) xác định trên K.
D. f (x) có giá trị nhỏ nhất trên K.

Câu 28. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Giảm đi n lần.
B. Không thay đổi.
C. Tăng lên n lần.

D. Tăng lên (n − 1) lần.
Câu 29. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog
A. 25.

B. 5.
x2 − 5x + 6
x→2
x−2
B. −1.


a

5

bằng



1
C. .
5

D.

C. 0.

D. 5.

5.


Câu 30. Tính giới hạn lim
A. 1.

Câu 31. [1231h] Trong khơng gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x y−2 z−3
x−2 y−2 z−3
=
=
.
B. =
=
.
A.
2
3

4
2
3
−1
x−2 y+2 z−3
x y z−1
C.
=
=
.
D. = =
.
2
2
2
1 1
1
x+1
Câu 32. Tính lim
bằng
x→+∞ 4x + 3
1
1
B. 1.
C. 3.
D. .
A. .
3
4
Câu 33. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,

lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 210 triệu.
B. 220 triệu.
C. 216 triệu.
D. 212 triệu.
Z 1
Câu 34. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0

1
A. .
B. 0.
4
Câu 35. Phát biểu nào sau đây là sai?
1
A. lim k = 0 với k > 1.
n
C. lim un = c (Với un = c là hằng số).

C.

1
.
2

D. 1.


B. lim qn = 1 với |q| > 1.
1
D. lim √ = 0.
n

Câu 36. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
9
15
18
6
Câu 37. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −5.
B. −9.
C. −12.
D. −15.
Trang 3/10 Mã đề 1



2
Câu 38. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3 + (m√
+ 1)2 x trên [0; 1] bằng 2√
D. m = ± 2.
A. m = ±1.
B. m = ±3.
C. m = ± 3.
9x
Câu 39. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
B. 2.
C. 1.
D. −1.
A. .
2
Câu 40. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 21.
B. P = −21.
C. P = 10.
D. P = −10.
0 0 0
d = 300 .
Câu 41. Cho khối lăng trụ đứng ABC.A B C có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
Độ dài cạnh bên
CC 0 = 3a. Thể tích V của khối lăng trụ đã cho.


3


3a3 3
a
3
A. V =
.
B. V = 3a3 3.
C. V = 6a3 .
D. V =
.
2
2
Câu 42. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng



a 2
a 2
.
C. a 2.
.
A. 2a 2.
B.
D.
2
4
Câu 43. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng

lãi suất không thay đổi).
A. 9 năm.
B. 10 năm.
C. 8 năm.
D. 7 năm.


4n2 + 1 − n + 2
bằng
Câu 44. Tính lim
2n − 3
3
A. .
B. 1.
C. +∞.
D. 2.
2
Câu 45. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. 2n3 lần.
B. n3 lần.
C. 2n2 lần.
D. n3 lần.

Câu 46. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 4 − 2 ln 2.
B. e.
C. 1.
D. −2 + 2 ln 2.
!

1
1
1
Câu 47. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
A. 2.
B. .
C. 0.
D. 1.
2
Câu 48. [1] !Tập xác định của hàm số y != log3 (2x + 1) là
!
!
1
1
1
1
A. −∞; .
B. − ; +∞ .
C. −∞; − .
D.
; +∞ .
2
2
2
2

1
Câu 49. [1] Giá trị của biểu thức log √3
bằng
10
1
1
A. .
B. −3.
C. − .
D. 3.
3
3
Câu 50. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m ≥ 3.
C. m > 3.
D. m < 3.
Câu 51. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 27.
B. 18.
C.
.
D. 12.
2
Trang 4/10 Mã đề 1



Câu 52. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 3.
B. 12.
C. 27.
D. 10.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 53. [3-12217d] Cho hàm số y = ln
x
+
1
A. xy0 = −ey + 1.
B. xy0 = ey − 1.
C. xy0 = −ey − 1.
D. xy0 = ey + 1.
2

Câu 54. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 2.
B. 4.
C. 3.

D. 5.

Câu 55. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {0}.
B. D = R.
C. D = (0; +∞).
D. D = R \ {1}.
!

5 − 12x
Câu 56. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. 2.
B. 3.
C. 1.
D. Vơ nghiệm.
Câu 57. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích√khối chóp S .ABCD là


2a3 3
a3 3
a3 3
3
D.
.
B.
.
C. a 3.
.
A.
3
6
3
Câu 58. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).


√ Thể tích khối chóp S 3.ABC
√ là

3
a 3
a 3
a3 3
a3 2
A.
.
B.
.
C.
.
D.
.
6
4
12
12
Câu 59. [2]√Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2√+ 1)2 x trên [0; 1] bằng 8
A. m = ± 2.
B. m = ±3.
C. m = ± 3.
D. m = ±1.
Câu 60. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3

a3
.
C.
.
D.
.
A. a3 .
B.
6
12
24
1 − 2n
Câu 61. [1] Tính lim
bằng?
3n + 1
2
2
1
A. − .
B. .
C. 1.
D. .
3
3
3
q
2
Câu 62. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 =
√ i
h

0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [−1; 0].
B. m ∈ [0; 2].
C. m ∈ [0; 1].
D. m ∈ [0; 4].
Câu 63. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
1
ab
1
A. √
.
B. 2
.
C. √
.
D. √
.
2
a +b
2 a2 + b2
a2 + b2
a2 + b2
Câu 64. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −3.
B. m = −1.
C. m = 0.

D. m = −2.


Câu 65. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. 1.
C. Vơ nghiệm.
D. 2.
Câu 66. Dãy số nào sau đây có giới hạn khác 0?
1
sin n
A. √ .
B.
.
n
n

C.

1
.
n

D.

n+1
.
n
Trang 5/10 Mã đề 1


a

1
Câu 67. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 7.
B. 1.
C. 2.
D. 4.
x+1
Câu 68. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
A. .
B. .
C. 1.
D. .
6
2
3
1
Câu 69. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3

một đoạn có độ dài bằng 24.
A. m = −3.
B. m = −3, m = 4.
C. m = 4.

D. −3 ≤ m ≤ 4.
3

Câu 70. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e3 .
B. e2 .
C. e5 .
4x + 1
Câu 71. [1] Tính lim
bằng?
x→−∞ x + 1
A. −1.
B. −4.
C. 4.

D. e.
D. 2.

Câu 72.
Z Trong cácα+1khẳng định sau, khẳng định nào sai? Z
x
+ C, C là hằng số.
B.
dx = x + C, C là hằng số.
A.
xα dx =
α+1
Z
Z
1

C.
dx = ln |x| + C, C là hằng số.
D.
0dx = C, C là hằng số.
x
Câu 73. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vng
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 5
a3 5
a3 3
A.
.
B.
.
C.
.
D.
.
4
6
12
12
m
ln2 x
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
Câu 74. [3] Biết rằng giá trị lớn nhất của hàm số y =
x
e

số tự nhiên. Tính S = m2 + 2n3
A. S = 135.
B. S = 22.
C. S = 32.
D. S = 24.
Câu 75.
đề nào sai? Z
Z Cho hàm sốZf (x), g(x) liên tục trên R. Trong cácZmệnh đề sau, mệnh Z
A.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
B.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Z
Z
Z
Z
Z
Z
C.
f (x)g(x)dx =
f (x)dx g(x)dx.
D.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Câu 76. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tam giác.
B. Hai hình chóp tứ giác.

C. Một hình chóp tam giác và một hình chóp tứ giác.
D. Một hình chóp tứ giác và một hình chóp ngũ giác.
Câu 77. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 10 mặt.
B. 6 mặt.
C. 8 mặt.

D. 4 mặt.

Câu 78. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là

3
3

a 15
a 5
a3 6
A.
.
B.
.
C.
.
D. a3 6.
3
3
3
Câu 79. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực

x≥1
A. m > 3.
B. m ≥ 3.
C. m < 3.
D. m ≤ 3.
Trang 6/10 Mã đề 1


Câu 80. Cho
√ 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.
√ số phức z thỏa mãn |z +
B. |z| = 17.
C. |z| = 17.
D. |z| = 10.
A. |z| = 10.
Câu 81. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m = 0.
B. m > 0.
C. m , 0.
log2 240 log2 15
Câu 82. [1-c] Giá trị biểu thức

+ log2 1 bằng
log3,75 2 log60 2
A. 1.
B. 4.
C. −8.
!2x−1
!2−x
3

3


Câu 83. Tập các số x thỏa mãn
5
5
A. (−∞; 1].
B. [1; +∞).
C. [3; +∞).
Z 2
ln(x + 1)
Câu 84. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. 3.
B. 1.
C. −3.

D. m < 0.

D. 3.

D. (+∞; −∞).

D. 0.

Câu 85. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.

A. 23.
B. 22.
C. 21.
D. 24.
Câu 86. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh
! đề nào dưới đây đúng?
1
B. Hàm số nghịch biến trên khoảng (1; +∞).
A. Hàm số nghịch biến trên khoảng −∞; .
3
!
!
1
1
C. Hàm số nghịch biến trên khoảng ; 1 .
D. Hàm số đồng biến trên khoảng ; 1 .
3
3
x−3 x−2 x−1
x
Câu 87. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là

A. (2; +∞).
B. (−∞; 2).
C. (−∞; 2].
D. [2; +∞).
Câu 88. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a =
.
B. log2 a = − loga 2.
C. log2 a = loga 2.
D. log2 a =
.
log2 a
loga 2
Câu 89. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 0.
B. 9.

C. 7.

D. 5.

Câu 90. Khối đa diện đều loại {3; 5} có số đỉnh
A. 20.
B. 12.

C. 30.


D. 8.

Câu 91.
Z Các khẳng định nào sau
Z đây là sai?
A.
Z
C.

f (x)dx = F(x) + C ⇒
!0
f (x)dx = f (x).

f (t)dt = F(t) + C. B.

Z
Z

D.

Z

f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C.
Z
k f (x)dx = k
f (x)dx, k là hằng số.

Câu 92. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?


A. y = log 41 x.
B. y = loga x trong đó a = 3 − 2.
C. y = log π4 x.
D. y = log √2 x.
Câu 93. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng BD và S C bằng




a 6
a 6
a 6
A. a 6.
B.
.
C.
.
D.
.
3
2
6
Trang 7/10 Mã đề 1


Câu 94. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).

(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (III).

B. (I) và (II).

C. (II) và (III).

Câu 95. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 1.

B. 3.

C. 4.

D. Cả ba mệnh đề.
1
3|x−1|

= 3m − 2 có nghiệm duy

D. 2.

Câu 96. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
A. .
B. 7.
C.

.
D. 5.
2
2
Câu 97. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
40
20
20
10
C50
.(3)10
C50
.(3)20
C50
.(3)30
C50
.(3)40
.
B.
.
C.
.
D.
.
A.
450
450

450
450
Câu 98. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 1.

B. 3.

C. 0.

Câu 99. Khối đa diện đều loại {3; 4} có số cạnh
A. 12.
B. 10.
Câu 100. [1] Tập xác định của hàm số y = 4
A. D = R.
B. D = [2; 1].

x2 +x−2

D. 2.

C. 6.

D. 8.

C. D = (−2; 1).

D. D = R \ {1; 2}.




Câu 101. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = a.
B. f (x) có giới hạn hữu hạn khi x → a.
x→a
x→a
C. lim+ f (x) = lim− f (x) = +∞.
D. lim f (x) = f (a).
x→a

x→a

Câu 102. Khối đa diện đều loại {3; 5} có số cạnh
A. 20.
B. 8.

x→a

C. 30.

3
2
Câu 103. Giá

√ trị cực đại của hàm số√y = x − 3x − 3x + 2
B. 3 − 4 2.
C. −3 + 4 2.
A. −3 − 4 2.


Câu 104. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
A. −2.
B. 2.
C. − .
2
1
Câu 105. Hàm số y = x + có giá trị cực đại là
x
A. 1.
B. 2.
C. −1.

D. 12.

D. 3 + 4 2.

D.

1
.
2

D. −2.
Trang 8/10 Mã đề 1


Câu 106. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng

1079
1728
23
1637
A.
.
B.
.
C.
.
D.
.
4913
4913
68
4913
Câu 107. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lăng trụ tam giác.
B. Khối lập phương.
C. Khối bát diện đều.
D. Khối tứ diện.
Câu 108. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
z
x+1 y−5
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
d:
2
2

−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 1; 6).
B. ~u = (2; 2; −1).
C. ~u = (3; 4; −4).
D. ~u = (1; 0; 2).
Câu 109. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc
60◦ . Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n.
Thể tích khối


√ chóp S .ABMN là 3 √
3
2a 3
a3 3
4a3 3
5a 3
.
B.
.
C.
.
D.
.
A.
3
3
2
3
Câu 110. Khối đa diện đều loại {5; 3} có số đỉnh

A. 8.
B. 30.
C. 12.
D. 20.
Câu 111. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 2).
B. Hàm số đồng biến trên khoảng (0; +∞).
C. Hàm số nghịch biến trên khoảng (−∞; 2).
D. Hàm số đồng biến trên khoảng (0; 2).



x = 1 + 3t




Câu 112. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi




z = 1
qua điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là












x = 1 + 3t
x
=
−1
+
2t
x
=
1
+
7t
x
=
−1
+
2t

















A. 
.
C. 
y = 1 + 4t .
y = −10 + 11t . B. 
y=1+t
y = −10 + 11t . D. 

















z = 6 − 5t
z = 1 + 5t
z = −6 − 5t
z = 1 − 5t
Câu 113. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 20, 128 triệu đồng. B. 3, 5 triệu đồng.
C. 70, 128 triệu đồng. D. 50, 7 triệu đồng.
Câu 114. Nếu khơng sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm hình chóp tam giác đều, khơng có tứ diện đều.
B. Một tứ diện đều và bốn hình chóp tam giác đều.
C. Bốn tứ diện đều và một hình chóp tam giác đều.
D. Năm tứ diện đều.
x+3
nghịch biến trên khoảng
Câu 115. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x−m
(0; +∞)?
A. 1.
B. 2.
C. Vô số.
D. 3.
Câu 116. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 2ac

3b + 3ac
A.
.
B.
.
C.
.
c+2
c+3
c+1

D.

3b + 3ac
.
c+2
Trang 9/10 Mã đề 1


Câu 117. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
9
13
5
23
.
B.
.
C.
.

D. − .
A. −
100
25
100
16
Câu 118. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình tam giác.
B. Hình lập phương.
C. Hình lăng trụ.

D. Hình chóp.

Câu 119. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.

1−x2



− 3m + 4 = 0 có nghiệm
3
9
C. 0 ≤ m ≤ .
D. 0 ≤ m ≤ .
4
4

1
Câu 121. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (−∞; 3).
B. (−∞; 1) và (3; +∞). C. (1; +∞).
D. (1; 3).
Câu 120. [12215d] Tìm m để phương trình 4 x+
3
A. m ≥ 0.
B. 0 < m ≤ .
4

− 4.2 x+

1−x2

Câu 122. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞

x→+∞

f (x) a
= .
A. lim
x→+∞ g(x)
b
C. lim [ f (x) + g(x)] = a + b.
x→+∞

Câu 123. Dãy!số nào có giới hạn bằng 0?

n
−2
.
B. un = n2 − 4n.
A. un =
3

B. lim [ f (x)g(x)] = ab.
x→+∞

D. lim [ f (x) − g(x)] = a − b.
x→+∞

!n
6
C. un =
.
5

n3 − 3n
D. un =
.
n+1

2

Câu 124. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
2
1

A. 3 .
B. 3 .
C. 2 .
2e
e
e

D.

1
√ .
2 e

Câu 125. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn
nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hồn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ơng A hồn nợ.
100.(1, 01)3
(1, 01)3
A. m =
triệu.
B. m =
triệu.
3
(1, 01)3 − 1
100.1, 03
120.(1, 12)3
C. m =
triệu.

D. m =
triệu.
3
(1, 12) − 1
3
Câu 126. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 3.
B. 2.
C. 1.
D. 0.
1 + 2 + ··· + n
Câu 127. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
A. lim un = 0.
B. lim un = 1.
1
C. Dãy số un không có giới hạn khi n → +∞.
D. lim un = .
2
Câu 128. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.




5 13
A. 2.
B.
.

C. 2 13.
D. 26.
13
Trang 10/10 Mã đề 1


Câu 129. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của hình chóp S .ABCD với√mặt phẳng (AIC) có diện√tích là

2
11a2
a2 2
a2 7
a 5
.
B.
.
C.
.
D.
.
A.
16
32
4
8
Câu 130. Xét hai câu sau
Z

Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên sai.

B. Cả hai câu trên đúng. C. Chỉ có (II) đúng.

D. Chỉ có (I) đúng.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 11/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

B

2.

B


3.

B

4.

B

5.

D

6. A

7.

B

8.

9.

B

10.

D

12.


D

11.

D

13.

14.

C

15.

D

16. A

17.

D

18.

19.

D

20. A


21.
23.

C

22.

B

25.

C

B
C
B

24.

C

26. A

C

27. A

28. A


29. A

30.

B

31.

D

32.

33.

D

34.

C

37.

C

39.

C

35.


B

38. A

D

40.

B

41. A

42.

B

43. A

44.

B

45.

46.

B

47.


48.

B

49.

50.

B

51.

B

53.

B

55.

B

52. A
54.

B

56.

C


57. A

58.

C

59. A

60.

C

61. A

62. A

B
D
C

63.

64.

D

65.

66.


D

67. A

68. A

69.
1

C
D
B


70.

C

72. A
74.

C

76. A
78.

C

80. A


71.

C

73.

C

75.

C

77.

B

79.

B
C

81.

82.

C

83.


B

84.

C

85.

B

86.

C

87.

88.
90.

D
B
D

92.
94.

89.

B


91.

B
D

93.
95. A

B

96. A

C

97.

98.

D

99. A
101.

100. A
102.

C

D


103.

104. A

D
D

D

107.

108.

D

109.

110.

D

111.

112. A

C

105.

106.


114.

D

C
D

113. A
115.

B

116.

D

117. A

118. A
120.

D

C

122. A

119.


B

121.

B

123. A

124.

125.

C

126.

D

128.

B

130.

B

2

B


127.

D

129.

D



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×