Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (351)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (148.69 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. [1-c] Giá trị của biểu thức
A. −4.

B. −2.

log7 16
log7 15 − log7

15
30

bằng

C. 4.
D. 2.
x−3 x−2 x−1
x
Câu 2. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham


x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (2; +∞).
B. (−∞; 2].
C. (−∞; 2).
D. [2; +∞).
Câu 3. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m , 0.
B. m < 0.
C. m = 0.

D. m > 0.

Câu 4. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −2.
B. x = −8.
C. x = 0.

D. x = −5.

Câu 5. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (1; −3).
B. (−1; −7).
C. (0; −2).
cos n + sin n
Câu 6. Tính lim
n2 + 1

A. 1.
B. −∞.
C. 0.

D. (2; 2).
D. +∞.

Câu 7. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 23.
B. 24.
C. 22.
D. 21.
Câu 8. √
Thể tích của tứ diện đều cạnh
√ bằng a

3
3
a 2
a3 2
a 2
.
B.
.
C.
.
A.
4

6
12
Z 2
ln(x + 1)
Câu 9. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. 3.
B. 1.
C. 0.


a3 2
D.
.
2

D. −3.

Câu 10. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a
= .
B. lim [ f (x) + g(x)] = a + b.
A. lim
x→+∞
x→+∞ g(x)
b

C. lim [ f (x)g(x)] = ab.
D. lim [ f (x) − g(x)] = a − b.
x→+∞
x→+∞
!
!
!
x
4
1
2
2016
Câu 11. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T =
.
B. T = 1008.
C. T = 2017.
D. T = 2016.
2017

Câu 12. Thể tích của khối lập phương có cạnh bằng a 2 √



2a3 2
A. V = a3 2.
.
D. 2a3 2.
B. V = 2a3 .
C.
3
Câu 13. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là



3
a3 3
4a3 3
5a3 3
2a 3
A.
.
B.
.
C.
.
D.
.
3
2

3
3
Trang 1/10 Mã đề 1



Câu 14. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã

√ cho là


3
πa 3
πa3 3
πa3 6
πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =
.
6
3
6
2
Câu 15. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng

1
A. V = 3S h.
B. V = S h.
C. V = S h.
3
Câu 16. [1] Đạo hàm của làm số y = log x là
1
1
B.
.
A. y0 = .
x
10 ln x

C. y0 =

ln 10
.
x

1
D. V = S h.
2
D. y0 =

1
.
x ln 10

Câu 17. Giá trị của lim(2x2 − 3x + 1) là

A. +∞.

x→1

B. 1.
2n − 3
Câu 18. Tính lim 2
bằng
2n + 3n + 1
A. +∞.
B. −∞.

C. 2.

D. 0.

C. 1.

D. 0.

Câu 19. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 14 năm.
B. 12 năm.
C. 11 năm.
D. 10 năm.
1
Câu 20. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm

3
A. 0 < m ≤ 1.
B. 0 ≤ m ≤ 1.
C. 2 < m ≤ 3.
D. 2 ≤ m ≤ 3.
1
Câu 21. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 3.
B. 4.
C. 2.
D. 1.
Câu 22. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một.
B. Khơng có.
C. Có một hoặc hai.
D. Có hai.
Câu 23. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. V = 4π.
B. 32π.
C. 16π.
D. 8π.
Câu 24. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.016.000.

B. 102.423.000.
C. 102.424.000.
D. 102.016.000.
Câu 25. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 0) và (2; +∞). B. (−∞; 2).

C. (0; +∞).

D. (0; 2).

2

Câu 26. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
1
1
A. 3 .
B. 2 .
C. √ .
2e
e
2 e
Câu 27. Thể tích của khối lăng√trụ tam giác đều có cạnh √
bằng 1 là:
3
3
3
A. .
B.
.

C.
.
4
4
2

D.

2
.
e3


3
D.
.
12
Trang 2/10 Mã đề 1


!2x−1
!2−x
3
3
Câu 28. Tập các số x thỏa mãn


5
5
A. (+∞; −∞).

B. (−∞; 1].
C. [1; +∞).

D. [3; +∞).

Câu 29. Khối đa diện đều loại {3; 4} có số mặt
A. 10.
B. 6.
C. 12.
D.
2
x − 12x + 35
Câu 30. Tính lim
x→5
25 − 5x
2
C. −∞.
D.
A. +∞.
B. − .
5
Câu 31. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
√3
4
Câu 32. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
7

5
5
A. a 3 .
B. a 8 .
C. a 3 .
D.
Câu 33. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều.

C. Khối tứ diện đều.

8.

2
.
5

2

a3 .

D. Khối lập phương.

Câu 34. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể tích khối chóp S .ABC là √


a3

a3 3
a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
12
4
8
4
Câu 35. Khối đa diện đều loại {4; 3} có số cạnh
A. 30.
B. 10.
C. 12.
D. 20.
Câu 36. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. .
B. 2e.
C. 3.
D. 2e + 1.
e
Câu 37. Hàm số nào sau đây khơng có cực trị
x−2
1

A. y =
.
B. y = x3 − 3x.
C. y = x + .
D. y = x4 − 2x + 1.
2x + 1
x
Câu 38. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng S B và AD bằng




a 2
a 2
A. a 3.
B. a 2.
C.
.
D.
.
3
2
Câu 39. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 20 .(3)30
C 10 .(3)40
C 20 .(3)20

C 40 .(3)10
A. 50 50 .
B. 50 50 .
C. 50 50 .
D. 50 50 .
4
4
4
4
Câu 40. Khối đa diện đều loại {3; 4} có số đỉnh
A. 8.
B. 10.
C. 4.
D. 6.
Câu 41. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −21.
B. P = −10.
C. P = 21.
D. P = 10.
Câu 42. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 120 cm2 .
B. 1200 cm2 .
C. 160 cm2 .
D. 160 cm2 .
Trang 3/10 Mã đề 1


Câu 43. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)


cùng vng góc với đáy, S C = a 3. Thể tích khối chóp S .ABCD


3
3
a
a
3
a3 3
3
A. a .
B.
.
C.
.
D.
.
3
3
9
Câu 44. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục ảo.
B. Hai đường phân giác y = x và y = −x của các góc tọa độ.
C. Trục thực.
D. Đường phân giác góc phần tư thứ nhất.
Câu 45. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng

√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3


2 3
A. 1.
B. 3.
C. 2.
D.
.
3
Câu 46. [1] Giá trị của biểu thức 9log3 12 bằng
A. 2.
B. 144.

C. 4.

D. 24.

Câu 47. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 1.
B. 3.
C. 2.
D. 7.
Câu 48. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả

vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?
A. 17 tháng.
B. 16 tháng.
C. 18 tháng.
D. 15 tháng.
Câu 49. Tính diện tích hình phẳng giới hạn bởi các đường y = xe x , y = 0, x = 1. √
1
3
3
C. .
D.
.
A. 1.
B. .
2
2
2
Câu 50. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 13.
B. 9.
C. Không tồn tại.
D. 0.
Câu 51. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối bát diện đều.

C. Khối tứ diện đều.

D. Khối 12 mặt đều.


Câu 52. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (1; 0; 2).
B. ~u = (3; 4; −4).
C. ~u = (2; 2; −1).
D. ~u = (2; 1; 6).
Câu 53. Khối chóp ngũ giác có số cạnh là
A. 9 cạnh.
B. 11 cạnh.

C. 12 cạnh.

Câu 54. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
A. − 2 .
B. − .
C. −e.
e
e


D. 10 cạnh.
D. −

1
.
2e

2

Câu 55. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 3 − log2 3.
B. 1 − log3 2.
C. 1 − log2 3.

D. 2 − log2 3.

Câu 56. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 2020.
B. log2 13.
C. log2 2020.
D. 13.
Trang 4/10 Mã đề 1


Câu 57. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 8 năm.
B. 10 năm.
C. 9 năm.

D. 7 năm.

Câu 58. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vô số.
B. 64.
C. 62.
D. 63.

3
2
Câu 59. [2] Phương trình log4 (x + 1) + 2 = log √2 4 − x + log8 (4 + x) có tất cả bao nhiêu nghiệm?
A. 2 nghiệm.
B. 3 nghiệm.
C. 1 nghiệm.
D. Vô nghiệm.

2
Câu 60. Xác định phần ảo của số
√ phức z = ( 2 + 3i)

A. −7.
B. 6 2.
C. −6 2.
D. 7.
log(mx)
Câu 61. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m = 4.

B. m < 0 ∨ m > 4.
C. m ≤ 0.
D. m < 0.
π
Câu 62. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu thức T = a + b 3.


C. T = 2.
D. T = 2 3.
A. T = 4.
B. T = 3 3 + 1.
 π π
3
Câu 63. Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 3.
B. 7.
C. 1.
D. −1.
2

2

sin x
Câu 64. [3-c]
+ 2cos x lần lượt là
√ Giá trị nhỏ nhất và√giá trị lớn nhất của hàm√số f (x) = 2

B. 2 2 và 3.
C. 2 và 3.
D. 2 và 3.
A. 2 và 2 2.

Câu 65. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
23
13
9
5
B. −
.
C.
.
D.
.
A. − .
16
100
100
25

Câu 66. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

1
A. 25.
B. 5.
C. .
D. 5.

5

Câu 67. [1] Biết log6 a = 2 thì log6 a bằng
A. 6.
B. 4.
C. 108.
D. 36.
Câu 68. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −7.
B. −5.
C. Khơng tồn tại.
x+2
bằng?
Câu 69. Tính lim
x→2
x
A. 0.
B. 2.
C. 1.
Câu 70. Bát diện đều thuộc loại
A. {3; 4}.
B. {4; 3}.

D. −3.

D. 3.

C. {3; 3}.

D. {5; 3}.




x = 1 + 3t




Câu 71. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua




z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương


 trình là









x = 1 + 3t

x = −1 + 2t
x = −1 + 2t
x = 1 + 7t
















.
C. 
D. 
A. 
y=1+t
y = 1 + 4t .
y = −10 + 11t .
y = −10 + 11t . B. 

















z = −6 − 5t
z = 6 − 5t
z = 1 + 5t
z = 1 − 5t
Trang 5/10 Mã đề 1


Câu 72. Dãy số
!n nào có giới hạn bằng 0?
!n
−2
6
A. un =
.
B. un =
.
3

5

C. un =

n3 − 3n
.
n+1

D. un = n2 − 4n.

Câu 73. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên khoảng (−2; 1).
B. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
D. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
Câu 74. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 6 mặt.
C. 8 mặt.

D. 10 mặt.

Câu 75. [1] Đạo hàm của hàm số y = 2 x là
1
1
.
C. y0 = 2 x . ln 2.
D. y0 =
.
A. y0 = 2 x . ln x.

B. y0 = x
2 . ln x
ln 2
Câu 76. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số đồng biến trên khoảng (1; 2).
B. Hàm số nghịch biến trên khoảng (−∞; 0).
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số nghịch biến trên khoảng (0; 1).
Câu 77. Tính lim
A. +∞.

x→1

x3 − 1
x−1

B. −∞.

C. 0.

D. 3.

Câu 78. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là 4.
B. Phần thực là 3, phần ảo là 4.
C. Phần thực là 3, phần ảo là −4.
D. Phần thực là −3, phần ảo là −4.
Câu 79. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
2


A. 2.

B. 4.

C. −1.

3

Z

6
3x + 1

. Tính

1

f (x)dx.
0

D. 6.

Câu 80. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 7%.
B. 0, 8%.
C. 0, 5%.
D. 0, 6%.
Câu 81. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính

f (2) + f (4)?
A. 12.
B. 10.
C. 11.
D. 4.
Câu 82. Khối đa diện đều loại {3; 5} có số đỉnh
A. 30.
B. 20.

C. 12.

D. 8.

Câu 83. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 6 mặt.
C. 9 mặt.
D. 3 mặt.
Câu 84. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. e2016 .
B. 1.
C. 22016 .
D. 0.
Câu 85. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
A. 2.
B. − .
C. −2.
2

Câu 86. Giá√trị cực đại của hàm số y√= x3 − 3x2 − 3x + 2

A. −3 + 4 2.
B. 3 + 4 2.
C. −3 − 4 2.

D.

1
.
2


D. 3 − 4 2.
Trang 6/10 Mã đề 1


d = 120◦ .
Câu 87. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
A. 4a.
B. 3a.
C. 2a.
D.
2
Câu 88. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 72.
B. 0, 8.

C. −7, 2.
D. 7, 2.
log 2x
Câu 89. [3-1229d] Đạo hàm của hàm số y =

x2
1 − 2 log 2x
1
1 − 4 ln 2x
1 − 2 ln 2x
A. y0 =
.
B. y0 = 3
.
C. y0 =
.
D. y0 = 3
.
3
3
x
2x ln 10
2x ln 10
x ln 10
Câu 90. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 0.
B. m > −1.
C. m ≥ 0.
D. m > 1.
Câu 91. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích

hình hộp đã cho là 1728. Khi đó,√các kích
√ thước của hình hộp là
C. 2, 4, 8.
D. 6, 12, 24.
A. 8, 16, 32.
B. 2 3, 4 3, 38.
Câu 92. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
Câu 93. Trong các khẳng định sau, khẳng định nào sai?
A. Z
F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
u0 (x)
dx = log |u(x)| + C.
B.
u(x)
C. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
D. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
Câu 94. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −3.
B. m = 0.
C. m = −2.
D. m = −1.
1 3
Câu 95. [2D1-3] Cho hàm số y = − x + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.

A. −2 < m < −1.
B. (−∞; −2) ∪ (−1; +∞). C. −2 ≤ m ≤ −1.
D. (−∞; −2] ∪ [−1; +∞).
Câu 96. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 48cm3 .
B. 91cm3 .
C. 64cm3 .
D. 84cm3 .
Câu 97. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x−2 y−2 z−3
x−2 y+2 z−3
A.
=
=
.

B.
=
=
.
2
3
4
2
2
2
x y z−1
x y−2 z−3
C. = =
.
D. =
=
.
1 1
1
2
3
−1
!
3n + 2
2
Câu 98. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 4.

B. 3.
C. 5.
D. 2.
1
Câu 99. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
A. xy0 = ey − 1.
B. xy0 = −ey − 1.
C. xy0 = ey + 1.
D. xy0 = −ey + 1.
Trang 7/10 Mã đề 1


! x3 −3mx2 +m
1
Câu 100. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m ∈ (0; +∞).
B. m ∈ R.
C. m , 0.
D. m = 0.
!4x
!2−x
3
2



Câu 101. Tập các số x thỏa mãn
#
" 3
! 2
"
!
#
2
2
2
2
A. −∞; .
B. − ; +∞ .
C.
; +∞ .
D. −∞; .
3
3
5
5
3

Câu 102. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e3 .
B. e5 .
C. e2 .
D. e.
Câu 103. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích

hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 3.
B. 0, 4.
C. 0, 2.
D. 0, 5.
Câu 104. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 5.
B. 0.

C. 9.

D. 7.

Câu 105. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a 3
a
B. .
C.
.
D. a.
A. .
3
2
2
Câu 106. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?

A. 2n3 lần.
B. 2n2 lần.
C. n3 lần.
D. n3 lần.
Câu 107. Cho hàm số y = x3 − 2x2 + x + 1.! Mệnh đề nào dưới đây đúng?
!
1
1
A. Hàm số nghịch biến trên khoảng ; 1 .
B. Hàm số đồng biến trên khoảng ; 1 .
3
3
!
1
C. Hàm số nghịch biến trên khoảng −∞; .
D. Hàm số nghịch biến trên khoảng (1; +∞).
3
un
Câu 108. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. +∞.
B. −∞.
C. 0.
D. 1.
Câu 109. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối 12 mặt đều.

C. Khối tứ diện đều.


Câu 110. Dãy số nào sau đây có giới hạn là 0?
1 − 2n
n2 + n + 1
.
B. un =
.
A. un =
2
(n + 1)
5n + n2

C. un =

n2 − 3n
.
n2

D. Khối bát diện đều.
D. un =

n2 − 2
.
5n − 3n2

2

Câu 111. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 8.
B. 6.
C. 5.


D. 7.

Câu 112. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = +∞.
B. lim f (x) = f (a).
x→a
x→a
x→a
C. lim+ f (x) = lim− f (x) = a.
D. f (x) có giới hạn hữu hạn khi x → a.
x→a

x→a

Câu 113. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi
G la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
15
18
9
6

Trang 8/10 Mã đề 1


Câu 114. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A. a3 .
B.
.
C.
.
D.
.
6
24
12
Câu 115. Khối đa diện đều loại {4; 3} có số mặt
A. 6.
B. 8.

C. 12.

D. 10.

Câu 116. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 9 lần.

B. Tăng gấp 27 lần.
C. Tăng gấp 3 lần.
D. Tăng gấp 18 lần.
Câu 117. Dãy số nào sau đây có giới hạn khác 0?
n+1
sin n
.
B.
.
A.
n
n
x2 − 5x + 6
x→2
x−2
B. 5.

1
C. √ .
n

D.

1
.
n

Câu 118. Tính giới hạn lim
A. 1.


C. 0.

D. −1.
!x

1

9
C. − log3 2.

Câu 119. [2] Tổng các nghiệm của phương trình 31−x = 2 +
A. log2 3.

B. 1 − log2 3.

D. − log2 3.

Câu 120. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18. √
A. 8.
B. 27.
C. 9.
D. 3 3.
2n + 1
Câu 121. Tìm giới hạn lim
n+1
A. 0.
B. 2.
C. 1.
D. 3.
Câu 122. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng

có độ dài lớn hơn 1.
5
5
B. m ≥ 0.
C. m > − .
D. m ≤ 0.
A. − < m < 0.
4
4



x=t




Câu 123. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)




z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
B. (x − 3)2 + (y + 1)2 + (z + 3)2 = .
A. (x + 3)2 + (y + 1)2 + (z − 3)2 = .

4
4
9
9
2
2
2
2
2
2
C. (x − 3) + (y − 1) + (z − 3) = .
D. (x + 3) + (y + 1) + (z + 3) = .
4
4
Câu 124. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 2).
B. Hàm số nghịch biến trên khoảng (−∞; 2).
C. Hàm số đồng biến trên khoảng (0; +∞).
D. Hàm số đồng biến trên khoảng (0; 2).
x2 − 9
Câu 125. Tính lim
x→3 x − 3
A. −3.
B. +∞.

C. 3.

D. 6.

Câu 126. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương

ứng sẽ:
A. Tăng gấp 6 lần.
B. Tăng gấp 8 lần.
C. Tăng gấp đôi.
D. Tăng gấp 4 lần.
Trang 9/10 Mã đề 1


Câu 127. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; 3; 3).
B. A0 (−3; −3; −3).
C. A0 (−3; −3; 3).
D. A0 (−3; 3; 1).
tan x + m
Câu 128. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. [0; +∞).
B. (−∞; 0] ∪ (1; +∞). C. (−∞; −1) ∪ (1; +∞). D. (1; +∞).

x2 + 3x + 5
Câu 129. Tính giới hạn lim
x→−∞
4x − 1
1
1

B. − .
C. 0.
D. 1.
A. .
4
4
1
Câu 130. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 1.
B. 2.
C. 4.
D. 3.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A

2.

3. A

4.


D
B

5.

C

6.

C

7.

C

8.

C

9.

D

10. A

11.

B

12.


13.

B

14.

15.

B

16.

D

18.

D

D

17.
19.

C
D

21.
C


24.
26.

20.

C

22.

C

27.

B

29.

C

30.

D

31. A

32.

D

33.


34.

C

35.

36.

C

37. A

38.

D

39.

40.

D

41. A

42.

B

25. A


B

28.

D

43.

C

D
B
C
C
B

44.

B

45.

C

46.

B

47.


C

48.

B

49. A

50.

D

52. A
54.
56.

D

60.

D

55.

D
C

61. A


B

63.
B

66. A
68.

53.

59. A

C

62. A
64.

D

57.

B

58.

51.

C
1


C

65.

B

67.

B

69.

B


70. A

71. A

72. A

73.

74.

75.

B

76.

78. A

79.

80. A

81. A
D

B
D

85.

86. A
88.

D

83.

C

84.

C

77.

D


82.

B

C

C

87.

D

89.

D
D

90.

B

91.

92.

B

93.


B

94.

C

95.

C

96.

C

97.

C

98. A

99. A
D

100.
102.

101.

B


B

103. A

104.

C

105.

106.

C

107. A

108.

C

109.

D
C

110.

B

111.


D

112.

B

114.

D

115. A
117.

116.
B

119.

D

118.

D

120.

D

121.


B

122.

123.

B

124.

125.

D

126.
128.

127. A
129.

130. A

B

2

B

C

D
B
D



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×